Skip to main content
Log in

Hydrogen passivation of defect levels in the annealed CdZnTe:In crystals

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We investigated high-resistivity cadmium zinc telluride (CdZnTe):In single crystals annealed in hydrogen to reveal the passivation effect of defects. An overall reduction in the concentration of defect levels induced by annealing was obviously observed by thermally stimulated current measurements. There is a large decrease by 56.51% in the concentration of secondly ionized Cd vacancies (T3) after hydrogenation. The concentration of firstly ionized Cd vacancies (T2) was a little bit lower (17.99%) in the hydrogenated CZT crystals. The formation of neutral InH complex and lower occupation of VCd by In dopant would result in a significant decrease (68.31%) in the trap density of \({\rm In}_{\rm Cd}^ +\) related shallow donor (T1) after hydrogenation. The bulk resistivity was calculated from IV characteristic curves to be ~1.97 × 1010 Ωcm before annealing and ~1.78 × 1010 Ωcm after annealing. Hall measurements also reveal n-type conduction for the hydrogenated crystals. Electron mobility was fitted to be about 110 cm2/Vs before annealing and 488 cm2/Vs after annealing, demonstrating better carrier transport properties. Electron mobility-lifetime product could be fitted to be about 3.60 × 10−4 cm2/V before annealing and 5.45 × 10−4 cm2/V after annealing, demonstrating better detector performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
TABLE 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. M. Fiederle, T. Feltgen, J. Meinhardt, M. Rogalla, and K. Benz: State of the art of (Cd, Zn) Te as gamma detector. J. Cryst. Growth 197, 635 (1999).

    Article  CAS  Google Scholar 

  2. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James: Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R 32, 103 (2001).

    Article  Google Scholar 

  3. C. Szeles: CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi B 241, 783 (2004).

    Article  CAS  Google Scholar 

  4. G. Zha, J. Yang, L. Xu, T. Feng, N. Wang, and W. Jie: The effects of deep level traps on the electrical properties of semi-insulating CdZnTe. J. Appl. Phys. 115, 043715 (2014).

    Article  CAS  Google Scholar 

  5. P. Rudolph: Non-stoichiometry related defects at the melt growth of semiconductor compound crystals–a review. Cryst. Res. Technol. 38, 542 (2003).

    Article  CAS  Google Scholar 

  6. E. Belas, M. Bugár, R. Grill, P. Horodyský, R. Feš, J. Franc, P. Moravec, Z. Matěj, and P. Höschl: Elimination of inclusions in (CdZn) Te substrates by post-grown annealing. J. Electron. Mater. 36, 1025 (2007).

    Article  CAS  Google Scholar 

  7. P. Yu, W. Jie, and T. Wang: Improvement of the quality of indium-doped CdZnTe single crystals by post-growth annealing for radiation detectors. CrystEngComm 13, 3521 (2011).

    Article  CAS  Google Scholar 

  8. G. Li, X. Zhang, W. Jie, and C. Hui: Thermal treatment of detector-grade CdZnTe. J. Cryst. Growth 295, 31 (2006).

    Article  CAS  Google Scholar 

  9. G. Li, X. Zhang, H. Hua, and W. Jie: Upgrading of CdZnTe by annealing with pure Cd and Zn metals. Semicond. Sci. Technol. 21, 392 (2006).

    Article  CAS  Google Scholar 

  10. P. Yu, W. Jie, and T. Wang: Detector-grade CdZnTe: In crystals obtained by annealing. J. Mater. Sci. 46, 3749 (2011).

    Article  CAS  Google Scholar 

  11. S.J. Pearton, J.W. Corbett, and T.S. Shi: Hydrogen in crystalline semiconductors. Appl. Phys. A Mater. Sci. Process 43, 153 (1987).

    Article  Google Scholar 

  12. N. Pan, B. Lee, S.S. Bose, M.H. Kim, J.S. Hughes, G.E. Stillman, K. Arai, and Y. Nashimoto: SI donor neutralization in high-purity GAAS. Appl. Phys. Lett. 50, 1832 (1987).

    Article  CAS  Google Scholar 

  13. R. Mostefaoui, J. Chevallier, A. Jalil, J.C. Pesant, C.W. Tu, and R.F. Kopf: Shallow donors and D-X centers neutralization by atomic-hydrogen in GAAIAS doped with silicon. J. Appl. Phys. 64, 207 (1988).

    Article  CAS  Google Scholar 

  14. S. Mergui, M. Hageali, J.M. Koebel, and P. Siffert: Effect of hydrogen on high resistivity P-type CDTE. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 322, 381 (1992).

    Article  Google Scholar 

  15. S. Sitharaman, R. Raman, L. Durai, S. Pal, M. Gautam, A. Nagpal, S. Kumar, S.N. Chatterjee, and S.C. Gupta: Effect of hydrogenation on the electrical and optical properties of CdZnTe substrates and HgCdTe epitaxial layers. J. Cryst. Growth 285, 318 (2005).

    Article  CAS  Google Scholar 

  16. S.J. Pearton and A.J. Tavendale: The electrical-properties of deep copper-related and nickel-related centers in silicon. J. Appl. Phys. 54, 1375 (1983).

    Article  CAS  Google Scholar 

  17. J. Chevallier, W.C. Dautremontsmith, C.W. Tu, and S.J. Pearton: Donor neutralization in GAAS(SI) by atomic-hydrogen. Appl. Phys. Lett. 47, 108 (1985).

    Article  CAS  Google Scholar 

  18. Y. Dong, R.M. Feenstra, D.W. Greve, J.C. Moore, M.D. Sievert, and A.A. Baski: Effects of hydrogen on the morphology and electrical properties of GaN grown by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 86, 121914 (2005).

    Article  CAS  Google Scholar 

  19. M. Singh and J. Weber: Shallow impurity neutralization in gap by atomic-hydrogen. Appl. Phys. Lett. 54, 424 (1989).

    Article  CAS  Google Scholar 

  20. J.G. Werthen, J.P. Haring, A.L. Fahrenbruch, and R.H. Bube: Effects of surface preparation on the properties of metal CDTE junctions. J. Appl. Phys. 54, 5982 (1983).

    Article  CAS  Google Scholar 

  21. J. White, R. Pal, J.M. Dell, C.A. Musca, J. Antoszewski, L. Faraone, and P. Burke: p-to-n type-conversion mechanisms for HgCdTe exposed to H-2/CH4 plasmas. J. Electron. Mater. 30, 762 (2001).

    Article  CAS  Google Scholar 

  22. P. Boieriu, C.H. Grein, S. Velicu, J. Garland, C. Fulk, S. Sivananthan, A. Stoltz, L. Bubulac, and J.H. Dinan: Effects of hydrogen on majority carrier transport and minority carrier lifetimes in long wavelength infrared HgCdTe on Si. Appl. Phys. Lett. 88, 062106 (2006).

    Article  CAS  Google Scholar 

  23. M. Pavlovic, U.V. Desnica, and J. Gladic: Complete set of deep traps in semi-insulating GaAs. J. Appl. Phys. 88, 4563 (2000).

    Article  CAS  Google Scholar 

  24. R.H. Nan, W.Q. Jie, G.Q. Zha, T. Wang, Y.D. Xu, and W.H. Liu: Investigation on defect levels in CdZnTe:Al using thermally stimulated current spectroscopy. J. Phys. D: Appl. Phys. 43, 345104 (2010).

    Article  CAS  Google Scholar 

  25. Z.Q. Fang, D.C. Look, and J. Zhao: Traps in semi-insulating InP studied by thermally stimulated current spectroscopy. Appl. Phys. Lett. 61, 589 (1992).

    Article  CAS  Google Scholar 

  26. R. Soundararajan and K.G. Lynn: Effects of excess tellurium and growth parameters on the band gap defect levels in CdxZn1-xTe. J. Appl. Phys. 112, 073111 (2012).

    Article  CAS  Google Scholar 

  27. L.Y. Xu, W.Q. Jie, G.Q. Zha, T. Feng, N. Wang, S.Z. Xi, X. Fu, W.L. Zhang, Y.D. Xu, and T. Wang: Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe. Appl. Phys. Lett. 104, 232109 (2014).

    Article  CAS  Google Scholar 

  28. J. Francou, K. Saminadayar, and J. Pautrat: Shallow donors in CdTe. Phys. Rev. B 41, 12035 (1990).

    Article  CAS  Google Scholar 

  29. S.-H. Wei and S. Zhang: Chemical trends of defect formation and doping limit in II-VI semiconductors: The case of CdTe. Phys. Rev. B 66, 155211 (2002).

    Article  CAS  Google Scholar 

  30. T. Wang, W.Q. Jie, D.M. Zeng, G. Yang, Y.D. Xu, W.H. Liu, and J.J. Zhang: Temperature dependence of photoluminescence properties of In-doped cadmium zinc telluride. J. Mater. Res. 23, 1389 (2008).

    Article  CAS  Google Scholar 

  31. L.Y. Xu, W.Q. Jie, B.R. Zhou, X. Fu, G.Q. Zha, T. Wang, Y.D. Xu, T. Feng, and X. Chen: Effects of crystal growth methods on deep-level defects and electrical properties of CdZnTe:In crystals. J. Electron. Mater. 44, 518 (2015).

    Article  CAS  Google Scholar 

  32. A. Carvalho, A. Tagantsev, S. Öberg, P. Briddon, and N. Setter: Cation-site intrinsic defects in Zn-doped CdTe. Phys. Rev. B 81, 075215 (2010).

    Article  CAS  Google Scholar 

  33. M. Chu, S. Terterian, D. Ting, C. Wang, H. Gurgenian, and S. Mesropian: Tellurium antisites in CdZnTe. Appl. Phys. Lett. 79, 2728 (2001).

    Article  CAS  Google Scholar 

  34. P.F. Yu, Y.R. Chen, J. Song, Y. Zhu, M.J. Zhang, B.G. Zhang, Y. Wang, W. Li, L.J. Luan, Y.Y. Du, J. Ma, J.H. Zheng, Z. Li, M. Bai, H. Li, and W.Q. Jie: Study of optical properties of high-resistivity CdMnTe:In single crystals before and after H-2 atmosphere annealing. Mater. Sci. Eng. B 246, 120 (2019).

    Article  CAS  Google Scholar 

  35. B. Biglari, M. Samimi, M. Hageali, J.M. Koebel, and P. Siffert: Passivation of bulk trapping levels in cadmium telluride by proton implantation. J. Appl. Phys. 65, 1112 (1989).

    Article  CAS  Google Scholar 

  36. S. Gurumurthy, H.L. Bhat, B. Sundersheshu, R.K. Bagai, and V. Kumar: Shallow donor neutralization in CdTe:In by atomic hydrogen. Appl. Phys. Lett. 68, 2424 (1996).

    Article  CAS  Google Scholar 

  37. J.I. Pankove, P.J. Zanzucchi, C.W. Magee, and G. Lucovsky: Hydrogen localization near boron in silicon. Appl. Phys. Lett. 46, 421 (1985).

    Article  CAS  Google Scholar 

  38. S.T. Pantelides: Effect of hydrogen on shallow dopants in crystalline silicon. Appl. Phys. Lett. 50, 995 (1987).

    Article  CAS  Google Scholar 

  39. L. Svob, A. Heurtel, and Y. Marfaing: Neutralization of acceptor and donor impurities in hydrogenated CDTE. J. Cryst. Growth 86, 815 (1988).

    Article  CAS  Google Scholar 

  40. A.E. Bolotnikov, G.C. Camarda, G.W. Wright, and R.B. James: Factors limiting the performance of CdZnTe detectors. IEEE Trans. Nucl. Sci. 52, 589 (2005).

    Article  Google Scholar 

  41. A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras: Midgap traps related to compensation processes in CdTe alloys. Phys. Rev. B 56, 14897 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key Research and Development Program of China (2016YFF0101301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Zhou, Y., Fu, X. et al. Hydrogen passivation of defect levels in the annealed CdZnTe:In crystals. Journal of Materials Research 35, 3041–3047 (2020). https://doi.org/10.1557/jmr.2020.289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.289

Navigation