Skip to main content
Log in

Defect passivation through quick radiative annealing for high-performance solution-processed Al-doped ZnO TCOs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Solution-processed ZnO-based TCOs generally exhibit greater resistivity and lesser transparency when compared to those processed by vapour-based techniques such as sputtering, PLD or ALD. This is mainly because of defects, lack of preferred orientation, partial segregation of dopants near grain boundaries and sometimes impurities such as partially decomposed precursors. The properties can be improved by improving crystallinity and reducing scattering from grain boundaries and defects, improving mobility. Doping with aluminium increases the carrier concentration; however, it introduces defects that hamper transparency and mobility. Here, we have utilized quick radiative annealed (10 s at 480°C) in 5%H2+Ar atmosphere to achieve resistivity as low as ~ 2 × 10− 3 Ωcm with ~ 94% transparency at 550 nm wavelength for 2% Al-doped ZnO films in spray-deposited thin film. The fast radiative annealing improved the mobility of all the films while simultaneously increasing the carrier concentration by as much as 10 times. XRD and SEM showed improved orientation and crystallinity on quick radiative annealing. PL and Raman spectroscopy revealed that the hydrogen passivated the defects (Zni and VO) and grain boundaries resulting in improved mobility and transparency. XPS and UV visible spectroscopy revealed activation of greater amounts of Al dopants, at the same time, passivating VO by partial H+ substitution, increased carrier concentration and wider optical bandgaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data can be supplied on specific requests to the authors.

References

  1. T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films. 516, 5822–5828 (2008). https://doi.org/10.1016/j.tsf.2007.10.063

    Article  CAS  Google Scholar 

  2. Z. Lu, J. Zhou, A. Wang, N. Wang, X. Yang, Synthesis of aluminium-doped ZnO nanocrystals with controllable morphology and enhanced electrical conductivity. J. Mater. Chem. 21, 4161 (2011). https://doi.org/10.1039/c0jm03299a

    Article  CAS  Google Scholar 

  3. A. Araújo, M.J. Mendes, T. Mateus, A. Vicente, D. Nunes, T. Calmeiro, E. Fortunato, H. Águas, R. Martins, Influence of the substrate on the morphology of self-assembled silver nanoparticles by rapid thermal annealing. J. Phys. Chem. C 120, 18235–18242 (2016). https://doi.org/10.1021/acs.jpcc.6b04283

    Article  CAS  Google Scholar 

  4. A. Lyubchyk, A. Vicente, P.U. Alves, B. Catela, B. Soule, T. Mateus, M.J. Mendes, H. Águas, E. Fortunato, R. Martins, Influence of post-deposition annealing on electrical and optical properties of ZnO-based TCOs deposited at room temperature. Phys. Status Solidi 213, 2317–2328 (2016). https://doi.org/10.1002/pssa.201532891

    Article  CAS  Google Scholar 

  5. C.H. Kwon, H.K. Hong, D.H. Yun, K. Lee, S.T. Kim, Y.H. Roh, B.H. Lee, Thick-film zinc-oxide gas sensor for the control of lean air-to-fuel ratio in domestic combustion systems. Sens. Actuators B Chem. 25, 610–613 (1995). https://doi.org/10.1016/0925-4005(95)85134-8

    Article  CAS  Google Scholar 

  6. D.S. Bhachu, G. Sankar, I.P. Parkin, Aerosol assisted chemical vapor deposition of transparent conductive zinc oxide films. Chem. Mater. 24, 4704–4710 (2012). https://doi.org/10.1021/cm302913b

    Article  CAS  Google Scholar 

  7. J.H. Kim, B. Du Ahn, C.H. Lee, K.A. Jeon, H.S. Kang, S.Y. Lee, Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature. J. Appl. Phys. 100, 113515 (2006). https://doi.org/10.1063/1.2369544

    Article  CAS  Google Scholar 

  8. C.L. Rhodes, S. Lappi, D. Fischer, S. Sambasivan, J. Genzer, S. Franzen, Characterization of monolayer formation on aluminum-doped zinc oxide thin films. Langmuir 24, 433–440 (2008). https://doi.org/10.1021/la701741m

    Article  CAS  Google Scholar 

  9. A. Lyubchyk, A. Vicente, B. Soule, P.U. Alves, T. Mateus, M.J. Mendes, H. Águas, E. Fortunato, R. Martins, Mapping the electrical properties of ZnO-Based transparent conductive Oxides grown at room temperature and improved by controlled postdeposition annealing. Adv. Electron. Mater. 2, 1500287 (2016). https://doi.org/10.1002/aelm.201500287

    Article  CAS  Google Scholar 

  10. A. Kumar, I. Ahmad, Role of defects and microstructure on the electrical properties of solution – processed Al – doped ZnO transparent conducting films. Appl. Phys. A 126, 1–11 (2020). https://doi.org/10.1007/s00339-020-03767-0

    Article  CAS  Google Scholar 

  11. O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda, A.K. Pradhan, Metal-like conductivity in transparent Al:ZnO films. Appl. Phys. Lett. 90, 252108 (2007). https://doi.org/10.1063/1.2749836

    Article  CAS  Google Scholar 

  12. R. Biswal, L. Castañeda, R. Moctezuma, J. Vega-Pérez, M.D.L.L. Olvera, A. Maldonado, Formation of indium-doped zinc oxide thin films using ultrasonic spray pyrolysis: the importance of the water content in the aerosol solution and the substrate temperature for enhancing electrical transport. Materials (Basel) 5, 432–442 (2012). https://doi.org/10.3390/ma5030432

    Article  CAS  Google Scholar 

  13. V. Bhosle, A. Tiwari, J. Narayan, Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO. Appl. Phys. Lett. 88, 032106 (2006). https://doi.org/10.1063/1.2165281

    Article  CAS  Google Scholar 

  14. V. Kumar, R.G. Singh, L.P. Purohit, R.M. Mehra, Structural, transport and optical properties of boron-doped zinc oxide nanocrystalline. J. Mater. Sci. Technol. 27, 481–488 (2011). https://doi.org/10.1016/S1005-0302(11)60095-9

    Article  CAS  Google Scholar 

  15. R.M. Pasquarelli, D.S. Ginley, R. O’Hayre, Solution processing of transparent conductors: from flask to film. Chem. Soc. Rev. 40, 5406–5441 (2011). https://doi.org/10.1039/c1cs15065k

    Article  CAS  Google Scholar 

  16. E. Bacaksiz, S. Aksu, S. Yılmaz, M. Parlak, M. Altunbaş, Structural, optical and electrical properties of Al-doped ZnO microrods prepared by spray pyrolysis. Thin Solid Films 518, 4076–4080 (2010). https://doi.org/10.1016/j.tsf.2009.10.141

    Article  CAS  Google Scholar 

  17. A. Kumar, M.I. Ahmad, Role of defects in the electronic properties of Al doped ZnO films deposited by spray pyrolysis. J. Mater. Sci. (2022). https://doi.org/10.1007/s10853-022-07136-5

    Article  Google Scholar 

  18. B.P. Zhang, Y. Segawa, K. Wakatsuki, Y. Kashiwaba, K. Haga, Structural and optical properties of ZnO films grown on R–Al2O3 substrates. Appl. Phys. Lett. 79, 3953–3955 (2001). https://doi.org/10.1063/1.1426255

    Article  CAS  Google Scholar 

  19. T.M. Barnes, J. Leaf, C. Fry, C.A. Wolden, Room temperature chemical vapor deposition of c-axis ZnO. J. Cryst. Growth 274, 412–417 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.015

    Article  CAS  Google Scholar 

  20. E.S. Shim, H.S. Kang, J.S. Kang, J.H. Kim, S.Y. Lee, Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD. Appl. Surf. Sci. 186, 474–476 (2002). https://doi.org/10.1016/S0169-4332(01)00746-2

    Article  CAS  Google Scholar 

  21. R. Martins, E. Fortunato, P. Nunes, I. Ferreira, A. Marques, M. Bender, N. Katsarakis, V. Cimalla, G. Kiriakidis, Zinc oxide as an ozone sensor. J. Appl. Phys. 96, 1398–1408 (2004). https://doi.org/10.1063/1.1765864

    Article  CAS  Google Scholar 

  22. A. Mahroug, S. Boudjadar, S. Hamrit, L. Guerbous, Structural, optical and photocurrent properties of undoped and Al-doped ZnO thin films deposited by sol–gel spin coating technique. Mater. Lett. 134, 248–251 (2014). https://doi.org/10.1016/j.matlet.2014.07.099

    Article  CAS  Google Scholar 

  23. M. Mickan, M. Stoffel, H. Rinnert, U. Helmersson, D. Horwat, Restoring the Properties of Transparent Al-Doped ZnO Thin Film Electrodes exposed to Ambient Air. J. Phys. Chem. C 121, 14426–14433 (2017). https://doi.org/10.1021/acs.jpcc.7b03020

    Article  CAS  Google Scholar 

  24. D. Van Hoang, N.H. Vu, N.T. Do, A.T.T. Pham, T.H. Nguyen, J.L. Kuo, T.B. Phan, V.C. Tran, Hydrogen roles approaching ideal electrical and optical properties for undoped and Al doped ZnO thin films. J. Mater. 8, 123–135 (2022). https://doi.org/10.1016/j.jmat.2021.04.011

    Article  Google Scholar 

  25. B.J. Babu, A. Maldonado, S. Velumani, R. Asomoza, Electrical and optical properties of ultrasonically sprayed Al-doped zinc oxide thin films. Mater. Sci. Eng. B 174, 31–37 (2010). https://doi.org/10.1016/j.mseb.2010.03.010

    Article  CAS  Google Scholar 

  26. M.A. Kaid, A. Ashour, Preparation of ZnO-doped Al films by spray pyrolysis technique. Appl. Surf. Sci. 253, 3029–3033 (2007). https://doi.org/10.1016/j.apsusc.2006.06.045

    Article  CAS  Google Scholar 

  27. H. Mondragón-Suárez, A. Maldonado, M. de la L Olvera, A. Reyes, R. Castanedo-Pérez, G. Torres-Delgado, R. Asomoza, ZnO: Al thin films obtained by chemical spray: effect of the Al concentration. Appl. Surf. Sci. 193, 52–59 (2002). https://doi.org/10.1016/S0169-4332(02)00011-9

    Article  Google Scholar 

  28. B. Joseph, P.K.K. Manoj, V.K.K. Vaidyan, Studies on the structural, electrical and optical properties of Al-doped ZnO thin films prepared by chemical spray deposition. Ceram. Int. 32, 487–493 (2006). https://doi.org/10.1016/j.ceramint.2005.03.029

    Article  CAS  Google Scholar 

  29. H. Gómez-Pozos, A. Maldonado, M. de la L Olvera, Effect of the [Al/Zn] ratio in the starting solution and deposition temperature on the physical properties of sprayed ZnO:Al thin films. Mater. Lett. 61, 1460–1464 (2007). https://doi.org/10.1016/j.matlet.2006.07.053

    Article  CAS  Google Scholar 

  30. A.F. Aktaruzzaman, G.L. Sharma, L.K. Malhotra, Electrical, optical and annealing characteristics of ZnO:Al films prepared by spray pyrolysis. Thin Solid Films. 198, 67–74 (1991). https://doi.org/10.1016/0040-6090(91)90325-R

    Article  CAS  Google Scholar 

  31. A. El Manouni, F.J. Manjón, M. Mollar, B. Marí, R. Gómez, M.C. López, J.R. Ramos-Barrado, Effect of aluminium doping on zinc oxide thin films grown by spray pyrolysis. Superlattices Microstruct. 39, 185–192 (2006). https://doi.org/10.1016/j.spmi.2005.08.041

    Article  CAS  Google Scholar 

  32. M. Kumar, L. Wen, B.B. Sahu, J.G. Han, Simultaneous enhancement of carrier mobility and concentration via tailoring of Al-chemical states in Al-ZnO thin films. Appl. Phys. Lett. 106, 241903 (2015). https://doi.org/10.1063/1.4922732

    Article  CAS  Google Scholar 

  33. S.S. Shinde, P.S. Shinde, Y.W. Oh, D. Haranath, C.H. Bhosale, K.Y. Rajpure, Investigation of structural, optical and luminescent properties of sprayed N-doped zinc oxide thin films. J. Anal. Appl. Pyrolysis 97, 181–188 (2012). https://doi.org/10.1016/j.jaap.2012.06.007

    Article  CAS  Google Scholar 

  34. D. Afouxenidis, R. Mazzocco, G. Vourlias, P.J. Livesley, A. Krier, W.I. Milne, O. Kolosov, G. Adamopoulos, ZnO-based thin film transistors employing aluminum titanate gate dielectrics deposited by spray pyrolysis at ambient air. ACS Appl. Mater. Interfaces 7, 7334–7341 (2015). https://doi.org/10.1021/acsami.5b00561

    Article  CAS  Google Scholar 

  35. H. Hung-Chun Lai, T. Basheer, V.L. Kuznetsov, R.G. Egdell, R.M.J. Jacobs, M. Pepper, P.P. Edwards, Dopant-induced bandgap shift in Al-doped ZnO thin films prepared by spray pyrolysis. J. Appl. Phys.  (2012). https://doi.org/10.1063/1.4759208

    Article  Google Scholar 

  36. R. Pandey, S. Yuldashev, H.D. Nguyen, H.C. Jeon, T.W. Kang, Fabrication of aluminium doped zinc oxide (AZO) transparent conductive oxide by ultrasonic spray pyrolysis. Curr. Appl. Phys. 12, S56–S58 (2012). https://doi.org/10.1016/j.cap.2012.05.027

    Article  Google Scholar 

  37. M. Aklilu, Y. Tai, Self-assembled monolayers assisted thin film growth of aluminum doped zinc oxide by spray pyrolysis method. Appl. Surf. Sci. 270, 648–654 (2013). https://doi.org/10.1016/j.apsusc.2013.01.107

    Article  CAS  Google Scholar 

  38. P. Nunes, E. Fortunato, R. Martins, Influence of the annealing conditions on the properties of ZnO thin films. Int. J. Inorg. Mater. 3, 1125–1128 (2001). https://doi.org/10.1016/S1466-6049(01)00113-1

    Article  CAS  Google Scholar 

  39. P. Nunes, A. Malik, B. Fernandes, E. Fortunato, P. Vilarinho, R. Martins, Influence of the doping and annealing atmosphere on zinc oxide thin films deposited by spray pyrolysis. Vacuum. 52, 45–49 (1999). https://doi.org/10.1016/S0042-207X(98)00321-2

    Article  CAS  Google Scholar 

  40. M.N. Islam, B.K. Samantaray, K.L. Chopra, H.N. Acharya, Microstructural characterization of transparent conducting aluminium doped zinc oxide films prepared by spray pyrolysis. Sol. Energy Mater. Sol. Cells. 29, 27–35 (1993). https://doi.org/10.1016/0927-0248(93)90089-L

    Article  CAS  Google Scholar 

  41. J. Troughton, C. Charbonneau, M.J. Carnie, M.L. Davies, D.A. Worsley, T.M. Watson, Rapid processing of perovskite solar cells in under 2.5 seconds. J. Mater. Chem. A 3, 9123–9127 (2015). https://doi.org/10.1039/C5TA00568J

    Article  CAS  Google Scholar 

  42. M.J. Carnie, C. Charbonneau, P.R.F. Barnes, M.L. Davies, I. Mabbett, T.M. Watson, B.C. O’Regan, D.A. Worsley, Ultra-fast sintered TiO 2 films in dye-sensitized solar cells: phase variation, electron transport and recombination. J. Mater. Chem. A 1, 2225–2230 (2013). https://doi.org/10.1039/C2TA01005D

    Article  CAS  Google Scholar 

  43. J. Xu, Z. Hu, X. Jia, L. Huang, X. Huang, L. Wang, P. Wang, H. Zhang, J. Zhang, J. Zhang, Y. Zhu, A rapid annealing technique for efficient perovskite solar cells fabricated in air condition under high humidity. Org. Electron. 34, 84–90 (2016). https://doi.org/10.1016/j.orgel.2016.04.012

    Article  CAS  Google Scholar 

  44. B. Jung, K. Kim, W. Kim, Microwave-assisted solvent vapor annealing to rapidly achieve enhanced performance of organic photovoltaics. J. Mater. Chem. A 2, 15175–15180 (2014). https://doi.org/10.1039/C4TA02609H

    Article  CAS  Google Scholar 

  45. O. Yoshikawa, T. Sonobe, T. Sagawa, S. Yoshikawa, Single mode microwave irradiation to improve the efficiency of polymer solar cell based on poly(3-hexylthiophene) and fullerene derivative. Appl. Phys. Lett. 94, 083301 (2009). https://doi.org/10.1063/1.3077612

    Article  CAS  Google Scholar 

  46. J. Kim, J.H. Ji, S.W. Min, G.H. Jo, M.W. Jung, M.J. Park, S.K. Lee, J.H. Koh, Enhanced conductance properties of UV laser/RTA annealed Al-doped ZnO thin films. Ceram. Int. 43, 3900–3904 (2017). https://doi.org/10.1016/j.ceramint.2016.12.063

    Article  CAS  Google Scholar 

  47. M.S. Pradeepkumar, H.V. Singh, S. Kumar, J. Basu, M.I. Ahmad, Low thermal budget processing of CdS thin films. Mater. Lett. 280, 128560 (2020). https://doi.org/10.1016/j.matlet.2020.128560

    Article  CAS  Google Scholar 

  48. J. Kim, J.H. Yun, S.W. Jee, Y.C. Park, M. Ju, S. Han, Y. Kim, J.H. Kim, W.A. Anderson, J.H. Lee, J. Yi, Rapid thermal annealed Al-doped ZnO film for a UV detector. Mater. Lett. 65, 786–789 (2011). https://doi.org/10.1016/j.matlet.2010.11.065

    Article  CAS  Google Scholar 

  49. Y.R. Jang, K.H. Yoo, S.M. Park, Rapid thermal annealing of ZnO thin films grown at room temperature. J. Vac Sci. Technol. A Vacuum Surfaces Film 28, 216–219 (2010). https://doi.org/10.1116/1.3290759

    Article  CAS  Google Scholar 

  50. T. Hori, H. Iwasaki, K. Tsuji, Charge-trapping properties of ultrathin nitrided oxides prepared by rapid thermal annealing. IEEE Trans. Electron. Devices 35, 904–910 (1988). https://doi.org/10.1109/16.3343

    Article  CAS  Google Scholar 

  51. D.H. Shin, S.T. Kim, J.H. Kim, H.J. Kang, B.T. Ahn, H. Kwon, Study of band structure at the zn(S,O,OH)/Cu(in,Ga)Se 2 interface via rapid thermal annealing and their effect on the photovoltaic properties. ACS Appl. Mater. Interfaces 5, 12921–12927 (2013). https://doi.org/10.1021/am403488h

    Article  CAS  Google Scholar 

  52. M. Ohyama, H. Kozuka, T. Yoko, Sol-Gel Preparation of transparent and conductive aluminum-doped zinc oxide films with highly preferential crystal orientation. J. Am. Ceram. Soc. 81, 1622–1632 (2005). https://doi.org/10.1111/j.1151-2916.1998.tb02524.x

    Article  Google Scholar 

  53. W. Tang, D.C. Cameron, Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process. Thin Solid Films. 238, 83–87 (1994). https://doi.org/10.1016/0040-6090(94)90653-X

    Article  CAS  Google Scholar 

  54. O.M. Abdulmunem, M.J. Mohammed Ali, E.S. Hassan, Optical and structural characterization of aluminium doped zinc oxide thin films prepared by thermal evaporation system. Opt. Mater. (Amst) 109, 110374 (2020). https://doi.org/10.1016/j.optmat.2020.110374

    Article  CAS  Google Scholar 

  55. C.M. Muiva, T.S. Sathiaraj, K. Maabong, Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceram. Int. 37, 555–560 (2011). https://doi.org/10.1016/j.ceramint.2010.09.042

    Article  CAS  Google Scholar 

  56. J. De Merchant, M. Cocivera, Preparation and doping of zinc oxide using spray pyrolysis. Chem. Mater. 7, 1742–1749 (1995). https://doi.org/10.1021/cm00057a026

    Article  Google Scholar 

  57. A. Janotti, C.G. Van De Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. (2009). https://doi.org/10.1088/0034-4885/72/12/126501

    Article  Google Scholar 

  58. D.G. Thomas, J.J. Lander, Hydrogen as a donor in zinc oxide. J. Chem. Phys. 25, 1136–1142 (1956). https://doi.org/10.1063/1.1743165

    Article  CAS  Google Scholar 

  59. H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, Y. Cao, Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films. Appl. Surf. Sci. 257, 4906–4911 (2011). https://doi.org/10.1016/j.apsusc.2010.12.144

    Article  CAS  Google Scholar 

  60. T. Sander, S. Eisermann, B.K. Meyer, P.J. Klar, Raman tensor elements of wurtzite ZnO. Phys. Rev. B (2012). https://doi.org/10.1103/PhysRevB.85.165208

    Article  Google Scholar 

  61. M. Sahal, R. Sersar, B. Marí, Preparation of intrinsic and Al-doped ZnO thin layers by Spray pyrolysis, in 2016 International Renewable and Sustainable Energy Conference (IRSEC),(2017), pp. 252–256. https://doi.org/10.1109/IRSEC.2016.7984051

  62. C.C. Singh, E. Panda, Zinc interstitial threshold in Al-doped ZnO film: Effect on microstructure and optoelectronic properties. J. Appl. Phys. 123, 165106 (2018). https://doi.org/10.1063/1.5021736

    Article  CAS  Google Scholar 

  63. H. Gupta, J. Singh, R.N. Dutt, S. Ojha, S. Kar, R. Kumar, V.R. Reddy, F. Singh, Defect-induced photoluminescence from gallium-doped zinc oxide thin films: influence of doping and energetic ion irradiation. Phys. Chem. Chem. Phys. 21, 15019–15029 (2019). https://doi.org/10.1039/C9CP02148E

    Article  CAS  Google Scholar 

  64. D. Gaspar, L. Pereira, K. Gehrke, B. Galler, E. Fortunato, R. Martins, High mobility hydrogenated zinc oxide thin films. Sol. Energy Mater. Sol. Cells. 163, 255–262 (2017). https://doi.org/10.1016/j.solmat.2017.01.030

    Article  CAS  Google Scholar 

  65. V. Gurylev, C.Y. Su, T.P. Perng, Hydrogenated ZnO nanorods with defect-induced visible light-responsive photoelectrochemical performance. Appl. Surf. Sci. 411, 279–284 (2017). https://doi.org/10.1016/j.apsusc.2017.03.146

    Article  CAS  Google Scholar 

  66. C.J.P. Alexander, V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, NIST X-ray photoelectron spectroscopy database  Meas. Serv. Div. Natl. Inst. Stand. Technol. 20899, 20899 (2012). https://doi.org/10.18434/T4T88K

    Article  Google Scholar 

  67. F.H. Wang, H.P. Chang, C.C. Tseng, C.C. Huang, Effects of H2 plasma treatment on properties of ZnO:Al thin films prepared by RF magnetron sputtering. Surf. Coat. Technol. 205, 5269–5277 (2011). https://doi.org/10.1016/j.surfcoat.2011.05.033

    Article  CAS  Google Scholar 

  68. M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya, XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280, 20–25 (1996). https://doi.org/10.1016/0040-6090(95)08239-5

    Article  CAS  Google Scholar 

  69. V. Gurylev, T.P. Perng, Defect engineering of ZnO: review on oxygen and zinc vacancies. J. Eur. Ceram. Soc. 41, 4977–4996 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.03.031

    Article  CAS  Google Scholar 

  70. F.M. Chang, S. Brahma, J.H. Huang, Z.Z. Wu, K.Y. Lo, Strong correlation between optical properties and mechanism in deficiency of normalized self-assembly ZnO nanorods. Sci. Rep. 9, 905 (2019). https://doi.org/10.1038/s41598-018-37601-8

    Article  CAS  Google Scholar 

  71. J. Li, S. Sathasivam, A. Taylor, C.J. Carmalt, I.P. Parkin, Single step route to highly transparent, conductive and hazy aluminium doped zinc oxide films. RSC Adv. 8, 42300–42307 (2018). https://doi.org/10.1039/c8ra09338e

    Article  CAS  Google Scholar 

  72. Y. Li, R. Yao, H. Wang, X.X. Wu, J. Wu, X.X. Wu, W. Qin, Enhanced performance in Al-Doped ZnO based transparent flexible transparent thin-film transistors due to oxygen vacancy in ZnO film with Zn-Al-O interfaces fabricated by atomic layer deposition. ACS Appl. Mater. Interfaces 9, 11711–11720 (2017). https://doi.org/10.1021/acsami.7b02609

    Article  CAS  Google Scholar 

  73. S.W. Weller, A.A. Montagna, Studies of alumina I. reaction with hydrogen at elevated temperatures. J. Catal. 21, 303–311 (1971). https://doi.org/10.1016/0021-9517(71)90149-7

    Article  CAS  Google Scholar 

  74. L. Castañeda, R. Silva-González, J.M. Gracia-Jiménez, M.E. Hernández-Torres, M. Avendaño-Alejo, C. Márquez-Beltrán, M. De La, J. Vega-Pérez, A. Maldonado, Influence of aluminum concentration and substrate temperature on the physical characteristics of chemically sprayed ZnO: Al thin solid films deposited from zinc pentanedionate and aluminum pentanedionate. Mater. Sci. Semicond. Process. 13, 80–85 (2010). https://doi.org/10.1016/j.mssp.2010.03.003

    Article  CAS  Google Scholar 

  75. B. Tönbül, H.A. Can, T. Öztürk, H. Akyıldız, Solution processed aluminum-doped ZnO thin films for transparent heater applications. Mater. Sci. Semicond. Process. (2021). https://doi.org/10.1016/j.mssp.2021.105735

    Article  Google Scholar 

  76. E. Burstein, Anomalous optical absorption limit in InSb  Phys. Rev. 93, 632–633 (1954). https://doi.org/10.1103/PhysRev.93.632

    Article  CAS  Google Scholar 

  77. T.S. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. Sect. B. 67, 775–782 (1954). https://doi.org/10.1088/0370-1301/67/10/306

    Article  Google Scholar 

  78. D. Raviendra, J.K. Sharma, Electroless deposition of cadmium stannate, zinc oxide, and aluminum-doped zinc oxide films. J. Appl. Phys. 58, 838–844 (1985). https://doi.org/10.1063/1.336310

    Article  CAS  Google Scholar 

  79. S. Marouf, A. Beniaiche, K. Kardarian, M.J. Mendes, O. Sanchez-Sobrado, H. Águas, E. Fortunato, R. Martins, Low-temperature spray-coating of high-performing ZnO:Al films for transparent electronics. J. Anal. Appl. Pyrolysis 127, 299–308 (2017). https://doi.org/10.1016/j.jaap.2017.07.021

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the DST-SERB, New Delhi, for the financial support through grant sanction no. ECR/2016/000854. The authors would also like to thank S Jit and Abhinav Kumar of the Department of Electronics Engineering, IIT BHU, Varanasi, for helping with the Hall probe and spectroscopy measurements. The authors thank P. C. Pandey for giving access and DST-FIST for funding the UV–Vis spectrophotometer measurement system in the Department of Physics, IIT (BHU), Varanasi.

Author information

Authors and Affiliations

Authors

Contributions

AK and MIA conceived and designed the experiments. AK synthesized and characterized the samples. IA and MIA analyzed the results. DKG did Raman spectroscopy and PL measurement. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Md. Imteyaz Ahmad.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1026.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Gorai, D.K. & Ahmad, M.I. Defect passivation through quick radiative annealing for high-performance solution-processed Al-doped ZnO TCOs. J Mater Sci: Mater Electron 34, 426 (2023). https://doi.org/10.1007/s10854-023-09867-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09867-w

Navigation