Skip to main content

Advertisement

Log in

Understanding processing parameters affecting residual stress in selective laser melting of Inconel 718 through numerical modeling

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, a thermal–elastic–plastic finite element model is proposed to investigate the effect of volume energy density on the temperature field, molten pool size, and residual stress distribution in the selective laser melting (SLM) process of Inconel 718 alloy. A temperature-dependent thermal–mechanical property of materials is considered, as well as the properties conversion between powder layer and solidified alloy. Within the scope of the study parameters, the simulated molten pool size increases with increasing volume energy density and exhibits linear growth relationship, which are validated by the experimental results and show a good agreement. In addition, five scanning strategies are adopted to study the effect of these scanning strategies on the residual stress distribution in this research. The results show that the residual stress distribution of SLM Inconel 718 specimen largely depends on the scanning strategy. Finally, to reveal the mechanism of residual stress formation, the restraint bar model is used to further analyze the formation mechanism of residual stress during the SLM process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Similar content being viewed by others

References

  1. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 60, 2229 (2012).

    Article  CAS  Google Scholar 

  2. G. Cam and M. Kocak: Progress in joining of advanced materials. Int. Mater. Rev. 43, 1 (1998).

    Article  CAS  Google Scholar 

  3. F.C. Liu, X. Lin, C.P. Huang, M.H. Song, G.L. Yang, J. Chen, and W.D. Huang: The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718. J. Alloy. Comp. 509, 4505 (2011).

    Article  CAS  Google Scholar 

  4. S.H. Chang: In situ TEM observation of γ, γ, and δ precipitations on Inconel 718 superalloy through HIP treatment. J. Alloy. Comp. 486, 716 (2009).

    Article  CAS  Google Scholar 

  5. T. Rong, D.D. Gu, Q.M. Shi, S.N. Cao, and M.J. Xia: Effects of tailored gradient interface on wear properties of WC/Inconel 718 composites using selective laser melting. Surf. Coat. Technol. 307, 418 (2016).

    Article  CAS  Google Scholar 

  6. H. Ali, L. Ma, H. Ghabeigi, and K. Mumtaz: In situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng., A 695, 211 (2017).

    Article  CAS  Google Scholar 

  7. P. Mercelis and J.P. Kruth: Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 12, 254 (2006).

    Article  Google Scholar 

  8. S.A. Khairallah and A. Anderson: Mesoscopic simulation model of selective laser melting of stainless steel powder. J. Mater. Process. Technol. 214, 2627 (2014).

    Article  CAS  Google Scholar 

  9. K. Zeng, D. Pal, and B. Stucker: A review of thermal analysis methods in laser sintering and selective laser melting. SFF Samposium, Vol. 769 (2012).

  10. S. Das: Physical aspects of process control in selective laser sintering of metals. Adv. Eng. Mater. 5, 701 (2003).

    Article  CAS  Google Scholar 

  11. B. Song, S.J. Dong, H.L. Liao, and C. Coddet: Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering. Int. J. Adv. Manuf. Technol. 61, 967 (2012).

    Article  Google Scholar 

  12. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.P. Kruth: A study of the micro structural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58, 3303 (2010).

    Article  CAS  Google Scholar 

  13. G.Q. Yu, D.D. Gu, D.H. Dai, M.J. Xia, C.L. Ma, and Q.M. Shi: On the role of processing parameters in thermal behavior, surface morphology and accuracy during laser 3D printing of aluminum alloy. J. Phys. D: Appl. Phys. 49, 135501 (2016).

    Article  Google Scholar 

  14. C. Li, C. Fu, Y. Guo, and F. Fang: A multiscale modeling approach for fast prediction of part distortion in selective laser melting. J. Mater. Process. Technol. 229, 703 (2016).

    Article  Google Scholar 

  15. B. Cheng, S. Shrestha, and K. Chou: Stress and deformation evaluations of scanning strategy effect in selective laser melting. Addit. Manuf. 12, 240 (2016).

    Google Scholar 

  16. H. Ali, H. Ghadbeigi, and K. Mumtaz: Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng., A 712, 175 (2018).

    Article  CAS  Google Scholar 

  17. L. Zhang, W.H. Wu, L. Lu, X.Q. Ni, B.B. He, Q.Y. Yang, G.L. Zhu, and Y.Y. Gu: Effect of heat input parameters on temperature field in Inconel 718 alloy during selective laser melting. J. Mater. Eng. 46, 29 (2018).

    Google Scholar 

  18. H. Ali, H. Ghadbeigi, and K. Mumtaz: Residual stress development in selective laser-melted Ti6Al4V: A parametric thermal modelling approach. Int. J. Adv. Manuf. Technol. 97, 2621 (2018).

    Article  Google Scholar 

  19. J. Goldak, A. Chakravarti, and M. Bibby: A new finite element model for welding heat sources. Metall. Mater. Trans. B 15, 299 (1984).

    Article  Google Scholar 

  20. J. Goldak, M. Bibby, J. Moore, R. House, and B. Patel: Computer modeling of heat flow in welds. Metall. Mater. Trans. B 17, 587 (1986).

    Article  Google Scholar 

  21. J. Song, W.H. Wu, L. Zhang, B.B. He, L. Lu, X.Q. Ni, Q.L. Long, and G.L. Zhu: Role of scanning strategy on residual stress distribution in Ti–6Al–4V alloy prepared by selective laser melting. Optik 170, 342 (2018).

    Article  CAS  Google Scholar 

  22. C.H. Lee, K.H. Chang, and J.U. Park: Three-dimensional finite element analysis of residual stresses in dissimilar steel pipe welds. Nucl. Eng. Des. 256, 160 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the project to strengthen industrial development at the grass-roots level (Project No. TC160A310/19), Natural Science Foundation of Shanghai (Project No. 17ZR1409200), Shanghai Rising-star program (Project No. 18QB1400600), and Shanghai Materials Genome Institute No. 5 (Project No. 16DZ2260605).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Zhang or Wenheng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Zhang, L., Wu, W. et al. Understanding processing parameters affecting residual stress in selective laser melting of Inconel 718 through numerical modeling. Journal of Materials Research 34, 1395–1404 (2019). https://doi.org/10.1557/jmr.2018.504

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.504

Navigation