Skip to main content
Log in

Dense and crack-free mullite films obtained from a hybrid sol–gel/dip-coating approach

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel hybrid processing has been developed to achieve dense and crack-free mullite films with large critical thicknesses. The amorphous solid nanoparticles obtained from the mullite sol–gel precursor were mixed with the same liquid precursor to form stable suspensions, which were subsequently used to form mullite coatings with the dip-coating method, followed by drying and firing. The hybrid precursor suspensions resulted in highly close-packed nanoparticles, which reduced shrinkage during sintering. Selecting the solvent with a low evaporation rate and high surface tension can effectively eliminate the surface instability caused by the lateral flow during solvent evaporation. The mullite film density was significantly improved at low sintering temperatures, because of the high packing density and viscous flow at above the glass transition temperature of the amorphous gel nanoparticles before crystallization. Dense and crack-free mullite films with 500–600 nm thickness can be obtained from the novel hybrid approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. W.M. Kriven, J.W. Palko, S. Sinogeikin, J.D. Bass, A. Sayir, G. Brunauer, H. Boysen, F. Frey, and J. Schneider: High temperature single crystal properties of mullite. J. Eur. Ceram. Soc. 19, 2529 (1999).

    Article  CAS  Google Scholar 

  2. P.C. Dokko, J.A. Pask, and K.S. Mazdiyasni: High-temperature mechanical properties of mullite under compression. J. Am. Ceram. Soc. 60, 150 (1977).

    Article  CAS  Google Scholar 

  3. S. Kanzaki, H. Tabata, T. Kumazawa, and S. Ohta: Sintering and mechanical properties of stoichiometric mullite. J. Am. Ceram. Soc. 68, C–6 (1985).

    Article  Google Scholar 

  4. K.N. Lee: Current status of environmental barrier coatings for Si-based ceramics. Surf. Coat. Technol. 133, 1 (2000).

    Google Scholar 

  5. R.A. Miller: Thermal barrier coatings for aircraft engines: History and directions. J. Therm. Spray Technol. 6, 35 (1997).

    Article  CAS  Google Scholar 

  6. T. Kulkarni, H.Z. Wang, S.N. Basu, and V.K. Sarin: Compositionally graded mullite-based chemical vapor deposited coatings. J. Mater. Res. 24, 470 (2009).

    Article  CAS  Google Scholar 

  7. O.R. Monteiro, Z. Wang, and I.G. Brown: Deposition of mullite and mullite-like coatings on silicon carbide by dual-source metal plasma immersion. J. Mater. Res. 12, 2401 (1997).

    Article  CAS  Google Scholar 

  8. P. Hou, S.N. Basu, and V.K. Sarin: Nucleation mechanisms in chemically vapor-deposited mullite coatings on SiC. J. Mater. Res. 14, 2952 (1999).

    Article  CAS  Google Scholar 

  9. R.P. Mulpuri and V.K. Sarin: Synthesis of mullite coatings by chemical vapor deposition. J. Mater. Res. 11, 1315 (1996).

    Article  CAS  Google Scholar 

  10. C.J. Brinker and G.W. Scherer: Sol–gel Science: The Physics and Chemistry of Sol–gel Processing (Academic press, New York, 2013).

    Google Scholar 

  11. J. Roy, S. Das, and S. Maitra: Sol gel-processed mullite coating—A review. Int. J. Appl. Ceram. Technol. 12, S2 (2014).

    Google Scholar 

  12. Y.Y. Chen and W.C.J. Wei: Formation of mullite thin film via a sol–gel process with polyvinylpyrrolidone additive. J. Eur. Ceram. Soc. 21, 2535 (2001).

    Article  CAS  Google Scholar 

  13. N. Wang, X.Z. Yang, J.B. Li, H. Lin, and B. Chi: Fabrication and characterization of porous mullite coating on porous silicon carbide support. Key Eng. Mater. 280, 1301 (2004).

    Google Scholar 

  14. S.A. Ansar, S. Bhattacharya, S. Dutta, S.S. Ghosh, and S. Mukhopadhyay: Development of mullite and spinel coatings on graphite for improved water-wettability and oxidation resistance. Ceram. Int. 36, 1837 (2010).

    Article  CAS  Google Scholar 

  15. M. Jayasankar, G.M. Anilkumar, V.S. Smitha, P. Mukundan, C.D. Madhusoodana, and K.G.K. Warrier: Low temperature needle like mullite grain formation in sol–gel precursors coated on SiC porous substrates. Thin Solid Films 519, 7672 (2011).

    Article  CAS  Google Scholar 

  16. U. Selvaraj, S. Komarneni, and R. Roy: Structural differences in mullite xerogels from different precursors characterized by 27Al and 29Si MASNMR. J. Solid State Chem. 106, 73 (1993).

    Article  CAS  Google Scholar 

  17. D.J. Cassidy, J.L. Woolfrey, J.R. Bartlett, and B. Ben-Nissan: The effect of precursor chemistry on the crystallisation and densification of sol–gel derived mullite gels and powders. J. Sol-Gel Sci. Technol. 10, 19 (1997).

    Article  CAS  Google Scholar 

  18. T. Ban, S. Hayashi, A. Yasumori, and K. Okada: Characterization of low temperature mullitization. J. Eur. Ceram. Soc. 16, 127 (1996).

    Article  CAS  Google Scholar 

  19. H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, and T. Hamatani: Stress and cracks in gel-derived ceramic coatings and thick film formation. J. Sol-Gel Sci. Technol. 26, 681 (2003).

    Article  CAS  Google Scholar 

  20. A. Atkinson and R.M. Guppy: Mechanical stability of sol–gel films. J. Mater. Sci. 26, 3869 (1991).

    Article  CAS  Google Scholar 

  21. Z. Chen, R. Burtovyy, K. Kornev, I. Luzinov, D. Xu, and F. Peng: The effect of polymer additives on the critical thicknesses of mullite thin films obtained from the monophasic sol–gel precursors. J. Sol-Gel Sci. Technol. 80, 285 (2016).

    Article  CAS  Google Scholar 

  22. C.J. Brinker, A.J. Hurd, P.R. Schunk, G.C. Frye, and C.S. Ashley: Review of sol–gel thin film formation. J. Non-Cryst. Solids 147, 424 (1992).

    Article  Google Scholar 

  23. S.Y. Chen and I.W. Chen: Cracking during pyrolysis of oxide thin films-phenomenology, mechanisms, and mechanics. J. Am. Ceram. Soc. 78, 2929 (1995).

    Article  CAS  Google Scholar 

  24. H. Kozuka and S. Takenaka: Single-step deposition of gel-derived lead zirconate titanate films: Critical thickness and gel film to ceramic film conversion. J. Am. Ceram. Soc. 85, 2696 (2002).

    Article  CAS  Google Scholar 

  25. C. Jing, X. Zhao, and Y. Zhang: Sol–gel fabrication of compact, crack-free alumina film. Mater. Res. Bull. 42, 600 (2007).

    Article  CAS  Google Scholar 

  26. T. Kishimoto and H. Kozuka: Sol–gel preparation of TiO2 ceramic coating films from aqueous solutions of titanium sulfate (IV) containing polyvinylpyrrolidone. J. Mater. Res. 18, 466 (2003).

    Article  CAS  Google Scholar 

  27. H. Kozuka and M. Kajimura: Single-step dip coating of crack-free BaTiO3 films >1 µm thick: Effect of poly(vinylpyrrolidone) on critical thickness. J. Am. Ceram. Soc. 83, 1056 (2000).

    Article  CAS  Google Scholar 

  28. H. Kozuka and S. Takenaka: Single-step deposition of gel-derived lead zirconate titanate films: Critical thickness and gel film to ceramic film conversion. J. Am. Ceram. Soc. 85, 2696 (2002).

    Article  CAS  Google Scholar 

  29. Z.H. Du and J. Ma: The effect of PVP on the critical thickness and properties of PLZT ceramic films. J. Electroceram. 16, 565 (2006).

    Article  CAS  Google Scholar 

  30. D.A. Barrow, T.E. Petroff, R.P. Tandon, and M. Sayer: Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process. J. Appl. Phys. 81, 876 (1997).

    Article  CAS  Google Scholar 

  31. Z. Wang, W. Zhu, C. Zhao, and O.K. Tan: Dense PZT thick films derived from sol–gel based nanocomposite process. Mater. Sci. Eng., B 99, 56 (2003).

    Article  CAS  Google Scholar 

  32. B. Lee and J. Zhang: Preparation, structure evolution and dielectric properties of BaTiO3 thin films and powders by an aqueous sol–gel process. Thin Solid Films 388, 107 (2001).

    Article  CAS  Google Scholar 

  33. D.L. Corker, Q. Zhang, R.W. Whatmore, and C. Perrin: PZT ‘composite’ ferroelectric thick films. J. Eur. Ceram. Soc. 22, 383 (2002).

    Article  CAS  Google Scholar 

  34. K.A. Erk, C. Deschaseaux, and R.W. Trice: Grain-boundary grooving of plasma-sprayed yttria-stabilized zirconia thermal barrier coatings. J. Am. Ceram. Soc. 89, 1673 (2006).

    Article  CAS  Google Scholar 

  35. Z. Chen, Z. Zhang, C.C. Tsai, K. Kornev, I. Luzinov, M. Fang, and F. Peng: Electrospun mullite fibers from the sol–gel precursor. J. Sol-Gel Sci. Technol. 74, 208 (2015).

    Article  CAS  Google Scholar 

  36. K. Okada, S. Yasohama, S. Hayashi, and A. Yasumori: Sol–gel synthesis of mullite long fibres from water solvent systems. J. Eur. Ceram. Soc. 18, 1879 (1998).

    Article  CAS  Google Scholar 

  37. K.C. Song: Preparation of mullite fibers from aluminum isopropoxide–aluminum nitrate–tetraethylorthosilicate solutions by sol–gel method. Mater. Lett. 35, 290 (1998).

    Article  CAS  Google Scholar 

  38. J. Vázquez, P.L. López-Alemany, P. Villares, and R. Jiménez-Garay: A study on glass transition and crystallization kinetics in Sb 0.12 as 0.36 Se 0.52 glassy alloy by using non-isothermal techniques. Mater. Chem. Phys. 57, 162 (1998).

    Article  Google Scholar 

  39. W. Xu, J. Ren, and G. Chen: Glass transition kinetics and crystallization mechanism in Ge–Ga–S–CsCl chalcohalide glasses. J. Non-Cryst. Solids 398, 42 (2014).

    Article  CAS  Google Scholar 

  40. L. Hu and F. Ye: Liquid fragility calculations from thermal analyses for metallic glasses. J. Non-Cryst. Solids 386, 46 (2014).

    Article  CAS  Google Scholar 

  41. D.J. Harris, H. Hu, J.C. Conrad, and J.A. Lewis: Patterning colloidal films via evaporative lithography. Phys. Rev. Lett. 98, 148301 (2007).

    Article  CAS  Google Scholar 

  42. S.J. Milne, M. Patel, and E. Dickinson: Experimental studies of particle packing and sintering behaviour of monosize and bimodal spherical silica powders. J. Eur. Ceram. Soc. 11, 1 (1993).

    Article  CAS  Google Scholar 

  43. C. Ji, W. Lan, and P. Xiao: Fabrication of yttria-stabilized zirconia coatings using electrophoretic deposition: Packing mechanism during deposition. J. Am. Ceram. Soc. 91, 1102 (2008).

    Article  CAS  Google Scholar 

  44. J.A. Lewis: Colloidal processing of ceramics. J. Am. Ceram. Soc. 83, 2341 (2000).

    Article  CAS  Google Scholar 

  45. Y. Gu, Z. Chen, N. Borodinov, I. Luzinov, F. Peng, and K.G. Kornev: Kinetics of evaporation and gel formation in thin films of ceramic precursors. Langmuir 30, 14638 (2014).

    Article  CAS  Google Scholar 

  46. M.J. Cima, J.A. Lewis, and A.D. Devoe: Binder distribution in ceramic greenware during thermolysis. J. Am. Ceram. Soc. 72, 1192 (1989).

    Article  CAS  Google Scholar 

  47. R.C. Chiu and M.J. Cima: Drying of granular ceramic films: II, drying stress and saturation uniformity. J. Am. Ceram. Soc. 76, 2769 (1993).

    Article  CAS  Google Scholar 

  48. K. Sefiane, L. Tadrist, and M. Douglas: Experimental study of evaporating water–ethanol mixture sessile drop: Influence of concentration. Int. J. Heat Mass Transfer 46, 4527 (2003).

    Article  CAS  Google Scholar 

  49. J.L. Beuth: Cracking of thin bonded films in residual tension. Int. J. Solids Struct. 29, 1657 (1992).

    Article  Google Scholar 

  50. Z.C. Xia and J.W. Hutchinson: Crack patterns in thin films. J. Mech. Phys. Solids 48, 1107 (2000).

    Article  CAS  Google Scholar 

  51. P. Xu, A.S. Mujumdar, and B. Yu: Drying-induced cracks in thin film fabricated from colloidal dispersions. Drying Technol. 27, 636 (2009).

    Article  Google Scholar 

  52. H. Kozuka: On ceramic thin film formation from gels: Evolution of stress, cracks and radiative striations. J. Ceram. Soc. Jpn. 111, 624 (2003).

    Article  CAS  Google Scholar 

  53. M.S. Tirumkudulu and W.B. Russel: Cracking in drying latex films. Langmuir 21, 4938 (2005).

    Article  CAS  Google Scholar 

  54. K.B. Singh and M.S. Tirumkudulu: Cracking in drying colloidal films. Phys. Rev. Lett. 98, 218302 (2007).

    Article  CAS  Google Scholar 

  55. R. Baranwal, M.P. Villar, R. Garcia, and R.M. Laine: Flame spray pyrolysis of precursors as a route to nano-mullite powder: Powder characterization and sintering behavior. J. Am. Ceram. Soc. 84, 951 (2001).

    Article  CAS  Google Scholar 

  56. I.M. Kalogeras and H.E.H. Lobland: The nature of the glassy state: Structure and transitions. J. Mater. Educ. 34, 69 (2012).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Burtovyy, R., Kornev, K.G. et al. Dense and crack-free mullite films obtained from a hybrid sol–gel/dip-coating approach. Journal of Materials Research 32, 1665–1673 (2017). https://doi.org/10.1557/jmr.2017.122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.122

Navigation