Skip to main content

Advertisement

Log in

Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset

  • Materials for Nuclear Power
  • Research Summery
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanostructuredferritic alloys (NFAs) have the potential to make transformational contributions to developing advanced sources of fission and fusion energy. NFAs are Fe-Cr based ferritic stainless steels that contain an ultrahigh density of Y-Ti-O nanofeatures (NFs). The NFs provide both outstanding high temperature properties and remarkable tolerance to irradiation induced displacement damage as well as the degrading effects of transmutation product helium. Indeed, NFs can transform helium from a liability to an asset by forming a high density of nm-scale bubbles that act as sinks for point defects and helium may provide near immunity to radiation damage. This article outlines recent progress on engaging the challenges facing NFA development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Zinkle and J.T. Busby, Materials Today, 12–11 (2009), p. 12.

    Article  Google Scholar 

  2. G.R. Odette, M.J. Alinger, and B.D. Wirth, Ann. Rev. Mater. Res., 38 (2008), p. 471; and references therein.

    Article  CAS  ADS  Google Scholar 

  3. G.R. Odette, RJ. Maziasz, and J.A. Spitznagel, J. Nucl. Mat., 103 (1981), p. 1239.

    Article  Google Scholar 

  4. L.K. Mansur and W.A. Coughlan, J. Nucl. Mat., 119 (1983), pp. 1–25.

    Article  CAS  ADS  Google Scholar 

  5. R.E. Stoller and G.R. Odette, Elf. of Irrad. on Mat: 13th Int. Sym., ASTM STP-955 (Philadelphia, PA: ASTM, 1987), p.371.

    Google Scholar 

  6. P.J. Maziasz, J. Nucl. Mat, 205 (1993), p. 118.

    Article  CAS  ADS  Google Scholar 

  7. H. Trinkaus, J. Nucl. Mat, 118 (1983), p. 39.

    Article  CAS  ADS  Google Scholar 

  8. G.R. Odette, J. Nucl. Mat, 155–157 (1988), p. 921.

    Article  Google Scholar 

  9. T. Yamamoto, G.R. Odette, P. Miao, D.J. Edwards, and R.J. Kurtz, J. Nuc. Mater., 386–388 (2009), p. 338.

    Article  Google Scholar 

  10. G.R. Odette et al., “Helium Transport, Fate and Management in Nanostructured Ferritic Alloys: In Situ Helium Implanter Studies,” J. Nucl. Mat, (2010) accepted for publication.

  11. G.R. Odette et al., papers to be published in Fus. Mater. Semiann. Prog. Rept DOE/ER-0313 (Oak Ridge, TN: Oak Ridge National Laboratory, 2010).

    Google Scholar 

  12. M.J. Alinger, G.R. Odette, and D.T. Hoelzer, Acta Mater., 57 (2009), p. 392.

    Article  CAS  Google Scholar 

  13. H. Sasasegawaetal., J.Nucl.Mat., 384–2(2009), p.115.

    ADS  Google Scholar 

  14. E.A. Marquis, App. Phys. Lett., 93–18 (2008), p. 181904.

    Article  Google Scholar 

  15. M. Klimenkov, R. Lindau, and A. Moeslang, J. Nucl. Mat, 386 (2009), p. 553.

    Article  ADS  Google Scholar 

  16. S. Lozano-Perez, V. de Castro Bernai, and R.J. Nicholls, Ultramicroscopy, 109 (2009), p. 1217.

    Article  CAS  PubMed  Google Scholar 

  17. D. Bhattacharyya et al., “On the Structure and Chemistry of Complex Oxide Nanofeatures and Oxides in Nanostructured Ferritic Alloy U14YWT,” to be submitted for publication in Acta Mater. (2010).

  18. D.T. Hoelzer et al., J. Nuc. Mat., 367 (2007), p. 166.

    Article  ADS  Google Scholar 

  19. S. Liu, C.U. Segre, and G.R. Odette, Trans. American Nuclear Society, 98 (2008), p. 1067.

    Google Scholar 

  20. M.J. Alinger et al., Mat. Sei. Engr. A, 518 (2009), p. 150.

    Article  Google Scholar 

  21. M. Ohnuma et al., Acta Mater., 57 (2009), pp. 5571–5581.

    Article  CAS  Google Scholar 

  22. D.T. Hoelzer et al., Fus. Mater. Semiann. Prog. Rept DOE/ER-0313/44 (2008), p. 53.

  23. H. Sasasegawa et al., J. Nucl. Mat, 386 (2009), p. 511.

    Article  ADS  Google Scholar 

  24. J.H. Schneibel et al., Scripta Mater., 61 (2009), p. 793.

    Article  CAS  Google Scholar 

  25. D.A. McClintock et al., J. Nucl. Mat, 386–388 (2009), p. 307.

    Article  Google Scholar 

  26. D.A. McClintock et al., J. Nucl. Mat, 392 (2009), p. 353.

    Article  CAS  ADS  Google Scholar 

  27. D.A. McClintock et al., personal communication.

  28. T.S. Byun et al., personal communication.

  29. C.C. Eiselt et al., “Tensile and Fracture Toughness Properties of the Nanostructured Ferritic Oxide Dispersion Strengthened Alloy 13Cr-1W-0.3Ti-0.3Y2O3,” J. Nucl. Mat. (2010) accepted.

  30. T. Zong and Y. Dai, J. Nucl. Mat, 398 (2009), p. 43.

    Google Scholar 

  31. C.L. Fu et al., Phys. Rev Lett., 99–22 (2007), 225502.

    Article  Google Scholar 

  32. Y. Jiang, J.R. Smith, and G.R. Odette, Phys. Rev. B, 79–6 (2009), 064103.

    Article  Google Scholar 

  33. Y. Jiang, J.R. Smith, and G.R. Odette, Acta Mater., 58 (2010), p. 1536.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Odette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odette, G.R., Hoelzer, D.T. Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset. JOM 62, 84–92 (2010). https://doi.org/10.1007/s11837-010-0144-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0144-1

Keywords

Navigation