Skip to main content
Log in

Nanocrystalline diamond films prepared by pulsed electron beam ablation on different substrates

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline diamond films have been deposited by pulsed electron beam ablation from a single target and on different substrates at room temperature and under argon background gas at 0.5 Pa. The films have been deposited from a highly ordered pyrolytic graphite target on four different substrate materials, which include silicon, stainless steel, sapphire, and cubic boron nitride. Based on experimental measurement data, obtained from various analytical techniques, it has been observed that sp3 bonded carbon content, grain size, film roughness, and nanocrystalline fraction of the films do not seem to be much affected by the type of substrate material used. The thickness of the films, in the range of ∼70–90 nm, seems to be relatively the same irrespective of the substrate material. Hardness measurements have shown that film hardness, ranging between 18.5 and 19.5 GPa, is not remarkably influenced by the type of substrate material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. D.M. Gruen: Ultrananocrystalline diamond in the laboratory and the cosmos. MRS Bull. 10, 771 (2001).

    Article  Google Scholar 

  2. A. Härtl, E. Schmich, J.A. Garrido, J. Hernando, S. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmüller, and M. Stutzmann: Protein-modified nanocrystalline diamond thin films for biosensor applications. J. Nat. Mater. 3, 736 (2004).

    Article  Google Scholar 

  3. J. Zhang, D.S. Su, R. Blume, R. Schlögl, R. Wang, X. Yang, and A. Gajovic: Surface chemistry and catalytic reactivity of nanodiamond for the steam-free dehydrogenation of ethylbenzene. J. Angew. Chem. 49, 8640 (2010).

    Article  CAS  Google Scholar 

  4. Sh. Michaelson, O. Ternyak, R. Akhvlediani, A. Hoffman, A. Lafosse, R. Azria, O.A. Williams, and D.M. Gruen: Hydrogen concentration and bonding configuration in polycrystalline diamond films: From micro- to nano-metric grain size. J. Appl. Phys. 102, 113516 (2007).

    Article  Google Scholar 

  5. V. Mortet, L. Zhang, M. Eckert, J. D’Haen, A. Soltani, M. Moreau, D. Troadec, E. Neyts, J.C. De Jaeger, J. Verbeeck, A. Bogaerts, G. Van Tendeloo, K. Haenen, and P. Wagner: Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth: Experimental and theoretical study. Phys. Status Solidi A 209, 1675 (2012).

    Article  CAS  Google Scholar 

  6. F. Klauser, D. Steinmuller-Nethl, R. Kaindl, E. Bertel, and N. Memmel: Raman studies of nano- and ultra-nanocrystalline diamond films grown by hot-filament CVD. Chem. Vap. Deposition 16, 127 (2010).

    Article  CAS  Google Scholar 

  7. D.M. Gruen: Nanocrystalline diamond films. Annu. Rev. Mater. Sci. 29, 211 (1999).

    Article  CAS  Google Scholar 

  8. R.D. Davies: Diamond (Adam Hilger, Bristol, UK, 1984).

    Google Scholar 

  9. K.E. Spear and J.P. Dismukes: Synthetic Diamond: Emerging CVD Science and Technology (John Wiley & Sons Inc., New York, 1993).

    Google Scholar 

  10. M.G. Donato, G. Faggio, G. Messina, S. Santangelo, M. Marinelli, E. Milani, G. Pucella, and G. Verona-Rinati: Raman and photoluminescence analysis of CVD diamond films: Influence of Si-related luminescence centre on the film detection properties. Diamond Relat. Mater. 13, 923 (2004).

    Article  CAS  Google Scholar 

  11. J. Birrell, J.E. Gerbi, O. Aiciello, J.M. Gibson, J. Johnson, and J.A. Carlisle: Interpretation of the Raman spectra of ultrananocrystalline diamond. Diamond Relat. Mater. 14, 86 (2005).

    Article  CAS  Google Scholar 

  12. I.I. Vlasov, V.G. Ralchenko, E. Goovaerts, A.V. Saveliev, and M.V. Kanzyuba: Bulk and surface-enhanced Raman spectroscopy of nitrogen-doped ultrananocrystalline diamond films. Phys. Status Solidi A 203, 3028 (2006).

    Article  CAS  Google Scholar 

  13. C. Popov, S. Bliznakov, and W. Kulisch: Influence of the substrate nature on the properties of nanocrystalline diamond films. Diamond Relat. Mater. 16, 740 (2007).

    Article  CAS  Google Scholar 

  14. D. Ballutaud, F. Jomard, B. Theys, T. Kociniewski, E. Rzepka, H. Girard, and S. Saada: Sp3/sp2 character of the carbon and hydrogen configuration in micro- and nanocrystalline diamond. Diamond Relat. Mater. 17, 451 (2008).

    Article  CAS  Google Scholar 

  15. P. Hongyan, S. Jiajing, and Y. Guilong: Study of nanocrystalline diamond film deposited rapidly by 500 W excimer laser. Chin. J. Laser 9, 201 (2000).

    Google Scholar 

  16. Y. Ou, J. Guo, and X. Yan: Growth of nanocrystalline diamond films by pulsed laser deposition in oxygen atmosphere. Nat. Sci. J. Xiangtan Univ. 25, 30 (2003).

    CAS  Google Scholar 

  17. V.E. Pukha, A.N. Stetsenko, S.N. Dub, and J.K. Lee: Nanocrystalline diamond thin films deposited from C60 monoenergetic fullerene ion beam. J. Nanosci. Nanotechnol. 7, 1370 (2007).

    Article  CAS  Google Scholar 

  18. E. Mounier, F. Bertin, M. Adamik, Y. Pauleau, and P.B. Barna: Effect of the substrate temperature on the physical characteristics of amorphous carbon films deposited by d.c. magnetron sputtering. Diamond Relat. Mater. 5, 1509 (1996).

    Article  CAS  Google Scholar 

  19. R. Henda and O. Alshekhli: Pulsed electron beam deposition of nanocrystalline diamond. MRS Online Proc. Libr. 1505, 6 (2013).

    Article  Google Scholar 

  20. O. Alshekhli and R. Henda: Hydrogen-free deposition of nanocrystalline diamond by channel-spark electron beam ablation. ECS J. Solid State Sci. Technol. 3, M21 (2014).

    Article  CAS  Google Scholar 

  21. K.S. Harshavardhan and M. Strikovski: Pulsed electron-beam deposition of high temperature superconducting films for coated conductor applications. In Second-Generation HTS Conductors, A. Goyal ed.; Springer: New York, 2005; pp. 109–133.

    Chapter  Google Scholar 

  22. M. Strikovski and K.S. Harshavardhan: Parameters that control pulsed electron beam ablation of materials and film deposition processes. Appl. Phys. Lett. 82, 853 (2003).

    Article  CAS  Google Scholar 

  23. O. Alshekhli: PhD Thesis Dissertation, Laurentian University, Canada, 2013.

  24. A.C. Ferrari and J. Robertson: Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. Ser. A 362, 2477 (2004).

    Article  CAS  Google Scholar 

  25. S. Prawer, K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, and J.L. Peng: The Raman spectrum of nanocrystalline diamond. J. Chem. Phys. Lett. 332, 93 (2000).

    Article  CAS  Google Scholar 

  26. S. Osswald, V.N. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi: Phonon confinement effects in the Raman spectrum of nanodiamond. Phys. Rev. B 80, 75419 (2009).

    Article  Google Scholar 

  27. J. Filik, J.N. Harvey, N.L. Allan, and P.W. May: Raman spectroscopy of nanocrystalline diamond: An ab initio approach. Phys. Rev. B 74, 035423 (2006).

    Article  Google Scholar 

  28. A.K. Bhattacharya and W.D. Nix: Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates. Int. J. Solids Struct. 24, 1287 (1988).

    Article  Google Scholar 

  29. W. Yang, F. Lu, and Z. Cao: Growth of nanocrystalline diamond protective coatings on quartz glass. J. Appl. Phys. 91, 10068 (2002).

    Article  CAS  Google Scholar 

  30. R. Narayan, W. Wei, C. Jin, M. Andara, A. Agarwal, R. Gerhardt, C. Shih, S. Lin, Y. Su, R. Ramamurti, and R. Singh: Microstructural and biological properties of nanocrystalline diamond coatings. J. Diamond Relat. Mater. 15, 1935 (2006).

    Article  CAS  Google Scholar 

  31. M. Wiora, N. Sadrifar, K. Brühne, P. Gluche, and H. Fecht: Correlation of microstructure and tribological properties of dry sliding nanocrystalline diamond coatings. In Proceedings of 3rd European Conference on Tribology, Vol. 1, F. Franek ed.; Vienna, Austria, 2011; pp. 293–298.

  32. R. Henda and O. Alshekhli: Estimation of requirements for the formation of nanocrystalline diamond driven by electron beam ablation. IEEE Trans. Plasma Sci. 43, 461 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research has been supported by the Canada Foundation for Innovation (CFI) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Redhouane Henda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henda, R., Alshekhli, O., Howlader, M. et al. Nanocrystalline diamond films prepared by pulsed electron beam ablation on different substrates. Journal of Materials Research 31, 1964–1971 (2016). https://doi.org/10.1557/jmr.2015.254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.254

Navigation