Skip to main content
Log in

Study of Undoped Nanocrystalline Diamond Films Grown by Microwave Plasma-Assisted Chemical Vapor Deposition

  • MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Undoped nanocrystalline diamond (NCD) films less than 1 μm thick grown on Si (100) silicon by microwave plasma-assisted chemical vapor deposition at a frequency of 2.45 GHz are studied. To obtain diamond dielectric films with maximum resistivity the deposition of films in three gas mixtures is investigated: hydrogen-methane mixture, hydrogen-methane mixture with the addition of oxygen and hydrogen-methane mixture with the addition of an inert gas. A relationship has been established between the growth conditions, structural and electrical properties of NCD films. It is shown that for the use of NCD films as effective dielectrics preliminary high-temperature annealing of the films is required, for example, in vacuum at a temperature of 600°C for one hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. O. A. Williams, M. Nesládek, J. J. Mareš, and P. Hubík, in Physics and Applications of CVD Diamond, Ed. by S. Koizumi, C. Nebel, and M. Nesládek (Wiley–VCH, Weinheim, 2008), p. 13.

    Google Scholar 

  2. J. E. Butler and A. V. Sumant, Chem. Vap. Deposit. 14, 145 (2008).

    Article  Google Scholar 

  3. O. A. Williams, Diamond Relat. Mater. 20, 621 (2011).

    Article  ADS  Google Scholar 

  4. J. Kusterer and E. Kohn, in CVD Diamond for Electronic Devices and Sensors, Ed. by R. S. Sussmann (Wiley, UK, 2009), p. 469.

    Google Scholar 

  5. A. V. Sumant, O. Auciello, R. W. Carpick, S. Srinivasan, and J. E. Butler, MRS Bull. 35, 281 (2010).

    Article  Google Scholar 

  6. D. M. Gruen, Ann. Rev. Mater. Sci. 29, 211 (1999).

    Article  ADS  Google Scholar 

  7. V. Ralchenko, S. Pimenov, V. Konov, A. Khomich, A. Saveliev, A. Popovich, I. Vlasov, E. Zavedeev, A. Bozhko, E. Loubnin, and R. Khmelnitskii, Diamond Relat. Mater. 16, 2067 (2007).

    Article  ADS  Google Scholar 

  8. K. J. Sankaran and K. Haenen, in Novel Aspects of Diamond, Ed. by N. Yang (Springer, 2019), p. 123.

    Google Scholar 

  9. I-Nan Lin, S. Koizumi, J. Yater, and F. Koeck, MRS Bull. 39, 533 (2014).

    Article  Google Scholar 

  10. A. V. Sumant, P. U. P. A. Gilbert, D. S. Grierson, A. R. Konicek, M. Abrecht, J. E. Butler, T. Feygelson, S. S. Rotter, and R. W. Carpick, Diamond Relat. Mater. 16, 718 (2007).

    Article  ADS  Google Scholar 

  11. Z. H. Shen, P. Hess, J. P. Huang, Y. C. Lin, K. H. Chen, L. C. Chen, and S. T. Lin, J. Appl. Phys. 99, 124302 (2006).

    Article  ADS  Google Scholar 

  12. O. J. L. Fox, J. Ma, P. W. May, M. N. R. Ashfold, and Yu. A. Mankelevich, Diamond Relat. Mater. 18, 750 (2009).

    Article  ADS  Google Scholar 

  13. M. Lions, S. Saada, M. A. Pinault, F. Andrieu, O. Faynot, and P. Bergonzo, AIP Conf. Proc. 1292, 129 (2010).

    Article  ADS  Google Scholar 

  14. M. Lions, S. Saada, B. Bazin, M.-A. Pinault, F. Jomard, F. Andrieu, O. Faynot, and P. Bergonzo, Diamond Relat. Mater. 19, 413 (2010).

    Article  ADS  Google Scholar 

  15. A. Aleksov, J. M. Gobien, X. Li, J. T. Prater, and Z. Sitar, Diamond Relat. Mater. 15, 248 (2006).

    Article  ADS  Google Scholar 

  16. A. L. Vikharev, A. M. Gorbachev, M. A. Lobaev, and D. B. Radishev, Diamond Relat. Mater. 83, 8 (2018).

    Article  ADS  Google Scholar 

  17. S. A. Bogdanov, A. M. Gorbachev, A. L. Vikharev, D. B. Radishev, and M. A. Lobaev, Diamond Relat. Mater. 97, 107407 (2019).

    Article  ADS  Google Scholar 

  18. Detonation Nanodiamonds: Technology, Structure, Properties and Applications, Ed. by A. Ya. Vul’ and O. A. Shenderova (FTI im. A. F. Ioffe, St. Petersburg, 2016) [in Russian].

  19. A. Ya. Vul’, V. G. Golubev, S. A. Grudinkin, A. Kruger, and H. Naramoto, Tech. Phys. Lett. 28, 787 (2002).

    Article  ADS  Google Scholar 

  20. A. E. Aleksenskiy, E. D. Eydelman, and A. Y. Vul, Nanosci. Nanotechnol. Lett. 3, 68 (2011).

    Article  Google Scholar 

  21. A. T. Dideikin, A. E. Aleksenskii, M. V. Baidakova, P. N. Brunkov, M. Brzhezinskaya, V. Yu. Davydov, V. S. Levitskii, S. V. Kidalov, Yu. A. Kukushkina, D. A. Kirilenko, V. V. Shnitov, A. V. Shvidchenko, B. V. Senkovskiy, M. S. Shestakov, and A. Ya. Vul, Carbon 122, 737 (2017).

    Article  Google Scholar 

  22. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983).

    Article  ADS  Google Scholar 

  23. J. Robertson, Mater. Sci. Eng. R 37, 129 (2002).

    Article  Google Scholar 

  24. G. Sharma, S. Sangodkar, and M. Roy, Synth. Met. 75, 201 (1995).

    Article  Google Scholar 

  25. P. Gonon, A. Deneuville, F. Fontaine, and E. Gheeraert, J. Appl. Phys. 78, 6633 (1995).

    Article  ADS  Google Scholar 

  26. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).

    Google Scholar 

  27. Y. Muto, T. Sugino, and J. Shirafuji, Appl. Phys. Lett. 59, 843 (1991).

    Article  ADS  Google Scholar 

  28. P. Gonon, Y. Boiko, S. Prawer, and D. Jamieson, J. Appl. Phys. 79, 3778 (1996).

    Article  ADS  Google Scholar 

  29. J. V. Manca, M. Nesladek, M. Neelen, C. Quaeyhaegens, L. de Schepper, and W. de Ceuninck, Microelectron. Reliab. 39, 269 (1999).

    Article  Google Scholar 

  30. A. K. Kulkarni, K. Tey, and H. Rodrigo, Thin Solid Films 270, 189 (1995).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Institute of Applied Physics of the Russian Academy of Science, project no. 0035-2019-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Vikharev.

Ethics declarations

The authors state no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikharev, A.L., Bogdanov, S.A., Ovechkin, N.M. et al. Study of Undoped Nanocrystalline Diamond Films Grown by Microwave Plasma-Assisted Chemical Vapor Deposition. Semiconductors 55, 66–75 (2021). https://doi.org/10.1134/S106378262101019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262101019X

Keywords:

Navigation