Skip to main content
Log in

Water bath synthesis and enhanced photocatalytic performances of urchin-like micro/nanostructured α-FeOOH

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Micro/nanostructured goethite (α-FeOOH) was synthesized by a low-temperature water bath method based on the reaction of urea and FeSO4•7H2O at 95 °C. It has been shown that the as-prepared α-FeOOH consists of nearly spherical particles with about 0.5–1 µm in diameter. The microsized α-FeOOH particles are urchin-like in morphology and composed of nanosized leaf-like objects, with about 150–200 nm in length and about 30–50 nm in width, in radial arrangement, showing high specific surface area (∼118 m2/g). The formation of such urchin-like α-FeOOH could be described by a two-step process, or formation of spherical particles, and ethylene glycol-adsorption induced preferential growth of nanoleaves on the preformed spherical particles. Importantly, such micro/nanostructured α-FeOOH has exhibited much higher photocatalytic activity to the organic pollutants, such as Rhodamine 6G, and better re-usable performances than the goethite nanorod powders, exhibiting the good application potential in the environmental treatment. This study could provide a useful material for environmental pollution treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

REFERENCES

  1. J.R. Domínguez, J. Beltrán, and O. Rodríguez: Vis and UV photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/O3, TiO2/S2O82−, O3, H2O2, S2O82−, Fe3+/H2O2 and Fe3+/H2O2/C2O42−) for dyes treatment. Catal. Today 101, 389–396 (2005).

    Article  CAS  Google Scholar 

  2. L.D. Zhang and M. Fang: Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5, 128–142 (2010).

    Article  CAS  Google Scholar 

  3. T. Inoue, A. Fujishima, S. Konishi, and K. Honda: Photoelectrocatalytic reduction of carbon-dioxide in aqueous suspensions of semiconductor powder. Nature 277, 637–638 (1979).

    Article  CAS  Google Scholar 

  4. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995).

    Article  CAS  Google Scholar 

  5. M.L. Chen, J.S. Bae, and W.C. Oh: Characterization of AC/TiO2 composite prepared with pitch binder and their photocatalytic activity. Bull. Korean Chem. Soc. 27, 1423–1428 (2006).

    Article  CAS  Google Scholar 

  6. A. Panniello, M.L. Curri, D. Diso, A. Licciulli, V. Locaputo, A. Agostiano, R. Comparelli, and G. Mascolo: Nanocrystalline TiO2 based films onto fibers for photocatalytic degradation of organic dye in aqueous solution. Appl. Catal., B 121, 190–197 (2012).

    Article  CAS  Google Scholar 

  7. B.A. Manning, J.R. Kiser, H. Kwon, and S.R. Kanel: Spectroscopic investigation of Cr3+ and Cr6+ treated nanoscale zerovalent iron. Environ. Sci. Technol. 41, 586–592 (2007).

    Article  CAS  Google Scholar 

  8. B. Wang, H.B. Wu, L. Yu, R. Xu, T. Lim, and X.W. Lou: Template-free formation of uniform urchin-like α-FeOOH hollow spheres with superior capability for water treatment. Adv. Mater. 24, 1111–1116 (2012).

    Article  CAS  Google Scholar 

  9. Y. Wang, J. Ma, and K. Chen: Adsorptive removal of Cr(VI) from wastewater by α-FeOOH hierarchical structure: Kinetics, equilibrium and thermodynamics. Phys. Chem. Chem. Phys. 15, 19415–19421 (2013).

    Article  CAS  Google Scholar 

  10. K. Amstaetter, T. Borch, P. Larese-Casanova, and A. Kappler: Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 44, 102–108 (2010).

    Article  CAS  Google Scholar 

  11. A. Iglesias, R. López, D. Gondar, J. Antelo, S. Fiol, and A. Florencio: Adsorption of paraquat on goethite and humic acid-coated goethite. J. Hazard. Mater. 183, 664–668 (2010).

    Article  CAS  Google Scholar 

  12. J. Krýsa, J. Jirkovský, O. Bajt, and G. Mailhot: Competitive adsorption and photodegradation of salicylate and oxalate on goethite. Catal. Today 161, 221–227 (2011).

    Article  CAS  Google Scholar 

  13. X. Zhou, H. Yang, C. Wang, X. Mao, Y. Wang, and G. Liu: Visible-light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles. J. Phys. Chem. C 114, 17051–17061 (2010).

    Article  CAS  Google Scholar 

  14. L.J. Xu and J.L. Wang: A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J. Hazard. Mater. 186, 256–264 (2011).

    Article  CAS  Google Scholar 

  15. M. Hojamberdiev, G.Q. Zhu, A. Eminov, and K. Okada: Template-free hydrothermal synthesis of hollow α-FeOOH urchin-like spheres and their conversion to α-Fe2O3 under low-temperature thermal treatment in air. J. Cluster Sci. 24, 97–106 (2013).

    Article  CAS  Google Scholar 

  16. W.P. Kwan and B.M. Voelker: Rates of hydroxyl radical generation and organic compound oxidation in mineralcatalyzed Fenton-like systems. Environ. Sci. Technol. 37, 1150–1158 (2003).

    Article  CAS  Google Scholar 

  17. J. He, W. Ma, J. He, J. Zhao, and J.C. Yu: Photooxidation of azo dye in aqueous dispersions of H2O2/α-FeOOH. Appl. Catal., B 39, 211–220 (2002).

    Article  CAS  Google Scholar 

  18. N. Murakami, T. Matsuo, T. Tsubota, and T. Ohno: Photocatalytic reaction over iron hydroxides: A novel visible-light responsive photocatalyst. Catal. Commun. 12, 341–344 (2011).

    Article  CAS  Google Scholar 

  19. G. Tong, J. Guan, and Q. Zhang: Goethite hierarchical nanostructures: Glucose-assisted synthesis, chemical conversion into hematite with excellent photocatalytic properties. Mater. Chem. Phys. 127, 371–378 (2011).

    Article  CAS  Google Scholar 

  20. B. Tang, G.L. Wang, L.H. Zhuo, J.H. Ge, and L.J. Cui: Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods. Inorg. Chem. 45, 5196–5200 (2006).

    Article  CAS  Google Scholar 

  21. D.M. Cwiertny, G.J. Hunter, J.M. Pettibone, M.M. Scherer, and V.H. Grassian: Surface chemistry and dissolution of α-FeOOH nanorods and microrods: Environmental implications of size-dependent interactions with oxalate. J. Phys. Chem. C 113, 2175–2186 (2009).

    Article  CAS  Google Scholar 

  22. S. Musi, S. Krehula, and S. Popovi: Effect of HCl additions on forced hydrolysis of FeCl3 solutions. Mater. Lett. 58, 2640–2645 (2004).

    Article  CAS  Google Scholar 

  23. C. Morterra, A. Chiorlno, and E. Borello: An IR spectroscopic characterization of α-FeOOH (goethite). Mater. Chem. Phys. 10, 119–138 (1984).

    Article  CAS  Google Scholar 

  24. X.B. Wang, W.P. Cai, Y.X. Lin, G.Z. Wang, and C.H. Liang: Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J. Mater. Chem. 20, 8582–8590 (2010).

    Article  CAS  Google Scholar 

  25. C.T. Sun and D.F. Xue: Tailoring anisotropic morphology at the nanoregime: Surface bonding motif determines the morphology transformation of ZnO nanostructures source. J. Phys. Chem. C 117, 5505–5511 (2013).

    Article  CAS  Google Scholar 

  26. C.T. Sun and D.F. Xue: Chemical bonding theory of single crystal growth and its application to phi 3. CrystEngComm 16, 2129–2135 (2014).

    Article  CAS  Google Scholar 

  27. K. Igarashi, M. Maeda, T. Takao, Y. Oki, and H. Kusama: Dominant factors of preventing rhodamine 6G from dimer formation in aqueous solutions. Bull. Chem. Soc. Jpn. 72, 1197–1202 (1999).

    Article  CAS  Google Scholar 

  28. F.L. Arbeloa, M.J. Tapia Estévez, T.L. Arbeloa, and I.L. Arbeloa: Spectroscopic study of the adsorption of rhodamine 6G on clay minerals in aqueous suspensions. Clay Miner. 32, 97 (1997).

    Article  Google Scholar 

  29. X. Li and N. Kikugawa: A comparison study of rhodamine B photodegradation over nitrogen-doped lamellar niobic acid and titanic acid under visible-light irradiation. Chem. - Eur. J. 15, 3538–3545 (2009).

    Article  CAS  Google Scholar 

  30. L. Zhang, Q.Q. Ding, and Y. Zhou: Hydrothermal synthesis of anatase flower-like nanostructures for photocatalytic degradation of dye. Cryst. Res. Technol. 46, 1202–1206 (2011).

    Article  CAS  Google Scholar 

  31. J.G. Yu, X.X. Yu, B.B. Huang, X.Y. Zhang, and Y. Dai: Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres. Cryst. Growth Des. 9, 1474–1480 (2009).

    Article  CAS  Google Scholar 

  32. H. Xie, Y.Z. Li, S.F. Jin, J.J. Han, and X.J. Zhao: Facile fabrication of 3D-Ordered macroporous nanocrystalline iron oxide films with highly efficient visible light induced photocatalytic activity. J. Phys. Chem. C 114, 9706–9712 (2010).

    Article  CAS  Google Scholar 

  33. X.H. Li, G.Y. Chen, L.B. Yang, Z. Jin, and H. Liu: Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater. 20, 2815–2824 (2010).

    Article  CAS  Google Scholar 

  34. Y. Jiang, P. Zhang, Z.W. Liu, and F. Xu: The preparation of porous nano-TiO2 with high activity and the discussion of the cooperation photocatalysis mechanism. Mater. Chem. Phys. 99, 498–504 (2006).

    Article  CAS  Google Scholar 

  35. F. Lu, W.P. Cai, and Y.G. Zhang: ZnO hierarchical micro/nanoarchitectures: Solvothermal synthesis and structurally enhanced photocatalytic performance. Adv. Funct. Mater. 18, 1047–1056 (2008).

    Article  CAS  Google Scholar 

  36. C.H. Ye, Y. Bando, G.Z. Shen, and D. Golberg: Thickness-dependent photocatalytic performance of ZnO nanoplatelets. J. Phys. Chem. B 110, 15146–15151 (2006).

    Article  CAS  Google Scholar 

  37. X.B. Chen, S.H. Shen, L.J. Guo, and S.S. Mao: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010).

    Article  CAS  Google Scholar 

  38. Q. Xiao, Z.C. Si, J. Zhang, C. Xiao, and X.K. Tan: Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J. Hazard. Mater. 150, 62–67 (2008).

    Article  CAS  Google Scholar 

  39. J. Chen and L. Zhu: J. Photochem. Photobiol., A 188, 56 (2007).

    Article  CAS  Google Scholar 

  40. K.Y. Li, M. Li, and D.F. Xue: Solution-phase electronegativity scale: Insight into the chemical behaviors of metal ions in solution. J. Phys. Chem. A 116, 4192 (2012).

    Article  CAS  Google Scholar 

  41. X. Chen, K.F. Chen, H. Wang, S.Y. Song, and D.F. Xue: Crystallization of Fe3+ in an alkaline aqueous pseudocapacitor system. CrystEngComm 16, 6707–6715 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Key Basic Research Program of China (Grant No. 2013CB934303), the China Postdoctoral Science Foundation (2013T60632), and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Cai.

Additional information

Contributing Editor: Akira Nakajima

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Wang, G., Fang, M. et al. Water bath synthesis and enhanced photocatalytic performances of urchin-like micro/nanostructured α-FeOOH. Journal of Materials Research 30, 1629–1638 (2015). https://doi.org/10.1557/jmr.2015.103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.103

Navigation