Skip to main content
Log in

Enhancement of glass-forming ability and plasticity of Cu-rich Cu-Zr-Al bulk metallic glasses by minor addition of Dy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

(Cu0.47Zr0.45Al0.08)100-x Dyx (x = 0, 1, 2, 3, 4; at.%) metallic glasses with greatly enhanced glass-forming ability (GFA) and plasticity were synthesized based on microalloying technique. The structure, thermal stability, and elastic properties of the BMG samples were studied by x-ray diffraction (XRD), differential scanning calorimetry (DSC), and ultrasonic measurements, respectively. With addition of minor dysprosium (Dy), fully metallic glassy rods with diameters exceeding 20 mm could be successfully fabricated by copper mold casting. In addition, the Cu-Zr-Al-Dy BMGs exhibit good mechanical properties under a compressive deformation mode, i.e., high yield strength of 1735–1906 MPa, Young’s modulus of 85–100 GPa, and distinct plastic strain up to 4.02%. The strength and plasticity show remarkable correlations with glass transition temperature and Poisson’s ratio, respectively. The role of minor Dy addition in enhancement in GFA and mechanical property of the Cu-rich BMGs is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  2. W.H. Wang, C. Dong, and C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).

    Article  Google Scholar 

  3. H.S. Chen: Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metall. 22, e1505 (1974).

    Article  Google Scholar 

  4. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).

    Article  CAS  Google Scholar 

  5. A. Peker and W. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  6. Q. Zhang, W. Zhang, and A. Inoue: Preparation of Cu36Zr48Ag8Al8 bulk metallic glass with a diameter of 25 mm by copper mold casting. Scr. Mater. 55, 711 (2006).

    Article  CAS  Google Scholar 

  7. A. Inoue, N. Nishiyama, and H. Kimura: Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. Trans., JIM 38, 179 (1997).

    Article  CAS  Google Scholar 

  8. B.W. Zhou, X.G. Zhang, W. Zhang, H. Kimura, T. Zhang, A. Makino, and A. Inoue: Synthesis and mechanical properties of new Cu-based Cu-Zr-Al glassy alloys with critical diameters up to centimeter order. Mater. Trans. 51, 826 (2010).

    Article  CAS  Google Scholar 

  9. W.H. Wang, Z. Bian, P. Wen, M.X. Pan, and D.Q. Zhao: Role of addition in formation and properties of Zr-based bulk metallic glasses. Intermetallics 10, 1249 (2002).

    Article  CAS  Google Scholar 

  10. Z.P. Lu and C.T. Liu: Role of minor alloying additions in formation of bulk metallic glasses: A review. J. Mater. Sci. 39, 3965 (2004).

    Article  CAS  Google Scholar 

  11. J.F. Wang, R. Li, N.B. Hua, and T. Zhang: Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. J. Mater. Res. 26, 2072 (2011).

    Article  CAS  Google Scholar 

  12. L. Zhang, Y.Q. Cheng, A.J. Cao, J. Xu, and E. Ma: Bulk metallic glasses with large plasticity: Composition design from the structural perspective. Acta Mater. 57, 1154 (2009).

    Article  CAS  Google Scholar 

  13. X. Xu, L.Y. Chen, G.Q. Zhang, L.N Wang, and J.Z. Jiang: Formation of bulk metallic glasses in Cu45Zr48−xAl7REx (RE=La, Ce, Nd, Gd and 0≤x≤5at.%). Intermetallics 15, 1066 (2007).

    Article  CAS  Google Scholar 

  14. E.S. Park, J.S. Kyeong, and D.H. Kim: Role of minor addition of metallic alloying elements in formation and properties of Cu-Ti-rich bulk metallic glasses. Scr. Mater. 57, 49 (2007).

    Article  CAS  Google Scholar 

  15. E.S. Park and D.H. Kim: Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses. Acta Mater. 54, 2597 (2005).

    Article  Google Scholar 

  16. D. Turnbull: Under what conditions can a glass be formed?. Contemp. Phys. 10, 473 (1969).

    Article  CAS  Google Scholar 

  17. Z. P. Lu and C. T. Liu: A new glass-forming ability criterion for bulk metallic glasses. Acta. Mater. 50, 35013512 (2002).

    Article  Google Scholar 

  18. J.J. Lewandowski, W.H. Wang, and A.L. Greer: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).

    Article  CAS  Google Scholar 

  19. E.P. Papadakis: Ultrasonic phase velocity by the pulse echo overlap method incorporating diffraction phase corrections. J. Acoust. Soc. Am. 42, 1045 (1967).

    Article  Google Scholar 

  20. D. Scheriber: Elastic Constants and their Measurement (McGraw-Hill, NewYork, 1973).

    Google Scholar 

  21. A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 (2001).

    Article  CAS  Google Scholar 

  22. W. Zhang and A. Inoue: Formation and mechanical properties of Ni-based Ni–Nb–Ti–Hf bulk glassy alloys. Scr. Mater. 48, 641 (2003).

    Article  CAS  Google Scholar 

  23. W.H. Wang: Bulk metallic glasses with functional physical properties. Prog. Mater. Sci. 52, 540 (2007).

    Article  CAS  Google Scholar 

  24. Y. Zhang, J. Chen, G. L. Chen, and X. J. Liu: Glass formation mechanism of minor yttrium addition in CuZrAl alloys. Appl. Phys. Lett. 89, 131904 (2006).

    Article  Google Scholar 

  25. J. Schroers and W.L. Johnson: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).

    Article  Google Scholar 

  26. H.S. Chen, J.T. Krause, and E. Coleman: Elastic constants, hardness and their implications to flow properties of metallic glasses. J. Non-Cryst. Solids 18, 157 (1975).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research is financially supported by the National Natural Science Foundation of China (Grant No. 51301029 and 51375071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. G. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B.W., Deng, L., Zhang, X.G. et al. Enhancement of glass-forming ability and plasticity of Cu-rich Cu-Zr-Al bulk metallic glasses by minor addition of Dy. Journal of Materials Research 29, 1362–1368 (2014). https://doi.org/10.1557/jmr.2014.132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.132

Navigation