Skip to main content
Log in

A New Nanoindentation Protocol for Identifying the Elasticity of Undamaged Extracellular Bone Tissue

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

While the quest for understanding and even mimicking biological tissue has propelled, over the last decades, more and more experimental activities at the micro and nanoscales, the appropriate evaluation and interpretation of respective test results has remained a formidable challenge. As a contribution to tackling this challenge, we here describe a new method for identifying, from nanoindentation, the elasticity of the undamaged extracellular bone matrix. The underlying premise is that the tested bovine bone sample is either initially damaged (i.e. exhibits micro-cracks a priori) or that suchmicro-cracks are actually induced by the nanoindentation process itself, or both. Then, (very many) indentations may relate to either an intact material phase (which is located sufficiently far away from micro-cracks), or to differently strongly damaged material phases. Corresponding elastic phase properties are identified from the statistical evaluation of the measured indentation moduli, through representation of their histogram as a weighted sum of Gaussian distribution functions. The resulting undamaged elastic modulus of bovine femoral extracellular bone matrix amounts to 31 GPa, a value agreeing strikingly well both with direct quasi-static modulus tests performed on SEM-FIB-produced micro-pillars (Luczynski et al., 2015), and with the predictions of a widely validated micromechanics model (Morin and Hellmich, 2014). Further confidence is gained through observing typical indentation imprints under Scanning Electron Microscopy (SEM), which actually confirms the existence of the two types of micro-cracks as described above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  2. J.Y. Rho, T.Y. Tsui, and G.M. Pharr, Biomaterials 18 (20), 1325–1330 (1997).

    Article  CAS  Google Scholar 

  3. J.Y. Rho and M.E. Roy, J. Biomed. Mat. Res. 45 (1), 48–54 (1999).

    Article  CAS  Google Scholar 

  4. P.K. Zysset, X. Edward Guo, C. Edward Hoffler, K.E. Moore, and S.A. Goldstein, J. Biomech. 32 (10), 1005–1012 (1999).

    Article  CAS  Google Scholar 

  5. S. Hengsberger, A. Kulik, and P.K. Zysset, Bone 30 (1), 178–184 (2002).

    Article  CAS  Google Scholar 

  6. J.Y. Rho, P. Zioupos, J.D. Currey, and G.M. Pharr, J. Biomech. 35 (2), 189–198 (2002).

    Article  CAS  Google Scholar 

  7. C.E. Hoffler, K.E. Moore, K. Kozloff P.K. Zysset, and S.A Goldstein, J. Orthop. Res. 18 (3), 432–437 (2000).

    Article  CAS  Google Scholar 

  8. L. Feng and I. Jasiuk, J. Biomech. 44 (2), 313–320 (2010).

    Article  Google Scholar 

  9. U. Wolfram, H.J. Wilke, and P.K. Zysset, Bone 46 (2), 348–54 (2010).

    Article  Google Scholar 

  10. A.K. Bembey, M.L. Oyen, A.J. Bushby, and A. Boyde, Philos. Mag. 86, 33–35 (2006).

    Article  CAS  Google Scholar 

  11. R.B. Ashman, S.C. Cowin, W.C. Van Buskirk, and J.C. Rice, J. Biomech. 17, 349–361 (1984).

    Article  CAS  Google Scholar 

  12. S. Lees, J.D. Heeley, and P.F. Cleary, Calcif. Tissue Int. 29 (1), 107–117 (1979).

    Article  CAS  Google Scholar 

  13. S. Lees, J. Ahern, and M. Leonard, J. Acoust. Soc. Am. 74, 28–33 (1983).

    Article  CAS  Google Scholar 

  14. A. Zaoui, J. Eng. Mech 128 (8), 808–816 (2002).

    Article  Google Scholar 

  15. W.J. Drugan and J.R. Willis, J. Mech. Phys. Solids 44 (4), 497–524 (1996).

    Article  CAS  Google Scholar 

  16. F.I. Fedorov, Theory of Elastic Waves in Crystals (Springer Science and Business Media, New York, 1968).

    Book  Google Scholar 

  17. C. Kohlhauser and C. Hellmich, Eng. Struct. 47, 115–133 (2013).

    Article  Google Scholar 

  18. A. Fritsch and C. Hellmich, J. Theor. Biol. 244 (4), 597–620 (2007).

    Article  CAS  Google Scholar 

  19. J. Vuong and C. Hellmich, J. Theor. Biol. 287, 115–130 (2011).

    Article  Google Scholar 

  20. A. Malandrino, A. Fritsch, O. Lahayne, K. Kropik, H. Redl, and J. Noailly, Mater. Lett. 78, 154–158 (2012).

    Article  CAS  Google Scholar 

  21. K.W. Luczynski, A. Steiger-Thirsfeld, J. Bernardi, J. Eberhardsteiner, and C. Hellmich, J. Mech Beh Biomed. 52, 51–62 (2015).

    Article  Google Scholar 

  22. M. Schaffler, W. Pitchford, K. Choi, and J. Riddle, Bone 15 (5), 483–488 (1994).

    Article  CAS  Google Scholar 

  23. T. Wenzel, M. Schaffler, and D. Fyhrie, Bone 19 (2), 89–95 (1996).

    Article  CAS  Google Scholar 

  24. F.J O’Brien, D. Taylor, G.R. Dickson, and T.C. Lee, J. Anat. 197 (3), 413–420 (2000).

    Article  Google Scholar 

  25. R.D. Chapurlat, M. Arlot, B. Burt-Pichat, P. Chavassieux, J.P. Roux, N. Portero-Muzy, and P.D. Delmas, J. Bone Miner. Res. 22 (10), 1502–1509 (2007).

    Article  CAS  Google Scholar 

  26. K. Tai, F.-J. Ulm, and C. Ortiz, Nano Lett. 6 (11), 2520–2525 (2006).

    Article  CAS  Google Scholar 

  27. A. Fritsch, C. Hellmich, and L. Dormieux, J. Theor. Biol. 260 (2), 230–252 (2009).

    Article  CAS  Google Scholar 

  28. J. Schwiedrzik, R. Raghavan, A. Bürki, V. LeNader, U. Wolfram, J. Michler, and P.K. Zysset, Nat. Mater. 13, 740–747 (2014).

    Article  CAS  Google Scholar 

  29. R. Ritchie, Nat. Mater. 10, 817–822 (2011).

    Article  CAS  Google Scholar 

  30. G. Constantinides and F.-J. Ulm, J. Mech. Phys. Solids 55 (1), 64–90 (2007).

    Article  CAS  Google Scholar 

  31. F.-J. Ulm, M. Vandamme, C. Bobko, J.A. Ortega, K. Tai, and C. Ortiz, J. Am. Ceram. Soc. 90 (9), 2677–2692 (2007).

    Article  CAS  Google Scholar 

  32. M. Vandamme and F.-J. Ulm, PNAS 106 (26), 10552–10557 (2009).

    Article  CAS  Google Scholar 

  33. C. Morin and C. Hellmich, Ultrasonics 54, 1251–1269 (2014).

    Article  Google Scholar 

  34. C. Fölsch, W. Mittelmeier, U. Bilderbeek, N. Timmesfeld, T. Von Garrel, and H.P Matter, Transfus. Med. Hemother 39 (1), 36–40 (2011).

    Article  Google Scholar 

  35. A. Nazarian, B.J. Hermannsson, J. Muller, D. Zurakowski, and B.D. Snyder, J. Biomech. 42 (1), 82–86 (2009).

    Article  Google Scholar 

  36. F. Linde and H.C.F. Sørensen, J. Biomech. 26 (10), 1249–52 (1993).

    Article  CAS  Google Scholar 

  37. M. Miller, C. Bobko, M. Vandamme, and F.-J. Ulm, Cement Concrete Res. 38, 467–476 (2008).

    Article  CAS  Google Scholar 

  38. A.G. Reisinger, D.H. Pahr, and P.K. Zysset, J. Mech. Beh. Biomed. Mat. 4, 2113–2127 (2011).

    Article  Google Scholar 

  39. B. van Rietbergen, H. Weinans, R. Huiskes, and A. Odgaard, J. Biomech. 28 (1), 69–81 (1995).

    Article  Google Scholar 

  40. G. Constantinides, K.S. Ravi Chandran, F.-J. Ulm, and K.J. Van Vliet, Mater. Sci. Eng. A-Struct. 430, 189–202 (2006).

    Article  CAS  Google Scholar 

  41. H. Kariem, M.-I. Pastrama S.I. Roohani-Esfahani, P. Pivonka, H. Zreiqat, and C. Hellmich, Mat. Sci. Eng. C 46 553–564 (2015).

    Article  CAS  Google Scholar 

  42. K. Weicker, Evolutionäre Algorithmen. Leitfäden der Informatik (Vieweg und Teubner Verlag, Wiesbaden, 2007; in German).

    Google Scholar 

  43. L.J. Katz, H.S. Yoon, S. Lipson, R. Maharidge, A. Meunier, and P. Christel, Calcif. Tissue Int. 36, 31–36 (1984).

    Article  Google Scholar 

  44. M. Locke, J. Morphology 262, 546–565 (2004).

    Article  Google Scholar 

  45. M.S. Bobji and S.K. Biswas, J. Mater. Res. 13 (11), 3227–3233 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furin, I., Pastrama, MI., Kariem, H. et al. A New Nanoindentation Protocol for Identifying the Elasticity of Undamaged Extracellular Bone Tissue. MRS Advances 1, 693–704 (2016). https://doi.org/10.1557/adv.2016.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.130

Navigation