Skip to main content
Log in

The Effects of Exogenous Pyridoxal-5-phosphate on Seedling Growth and Development of Wheat under Salt Stress

  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Salt stress is one of the major abiotic stress which severely limits plant growth and reduces crop productivity across the world. In the present study, the effects of exogenous pyridoxal-5-phosphate (vitamin B6, VB6) on seedling growth and development of wheat under salt stress were investigated. The results showed that exogenous application of pyridoxal-5-phosphate (VB6) significantly increased the RWC, biomass, the concentration of photosynthetic pigments, proline, the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), together with decreasing the content of Malondiadehyde (MDA) and hydrogen peroxide (H2O2) in wheat leaves under salt stress. Meanwhile, the transcript level of P5CR, P5CS, SOD, TaSOS1 and TaSOS4 were also up-regulated after treatment with pyridoxal-5-phosphate. VB6 acts as a signal in regulating the activities of plant antioxidant enzymes and SOS pathway to improve resistance to salt stress. The current study results may give an insight into the regulatory roles of VB6 in improving salt stress and VB6 could be an easily and effective method to improve salt-stress tolerance to wheat in the field condition. It is urgency to understand the molecular mechanism of VB6 to enhance the salt tolerance of wheat in the next work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almansouri, M., Kinet, J.M., Lutts, S. 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231(2):243–254.

    Article  CAS  Google Scholar 

  • Arfan, M., Athar, H.R., Ashraf, M. 2007. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J. Plant Physiol. 164(6):685–694.

    Article  CAS  PubMed  Google Scholar 

  • Arzani, A. 2008. Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell. Dev.-Pl. 44(5):373–383.

    Article  CAS  Google Scholar 

  • Ashraf, M., Foolad, M.R. 2013. Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breeding 132(1):10–20.

    Article  Google Scholar 

  • Askari, H., Edqvist, J., Hajheidari, M., Kafi, M., Salekdeh, G.H. 2006. Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6(8):2542–2554.

    Article  CAS  PubMed  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207.

    Article  CAS  Google Scholar 

  • Bhardwaj, M., Maekawa, F., Niimura, Y., Macer, D.R.J. 2010. Ethics in food and agriculture: views from fao. Int. J. Food Sci. Tech. 38(5):565–577.

    Article  Google Scholar 

  • Brini, F., Hanin, M., Mezghani, I., Berkowitz, G.A., Masmoudi, K. 2007. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J. Exp. Bot. 58(2):301–308.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I., Horst, W.J. 1991. Effect of aluminum on lipid-peroxidation, superoxide-dismutase, catalase, and peroxidase-activities in root-tips of soybean (glycine-max). Physiol. Plantarum 83(3):463–468.

    Article  CAS  Google Scholar 

  • Chen, L.H., Zhang, B., Xu, Z.Q. 2008. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res. 17(1):121–132.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y.J., Wang, W.W., Hu, G.Q., Chen, W.F., Zhuge, Y., Wang Z.L., He, M.R. 2017. Role of exogenous 24-epibrassinolide in enhancing the salt tolerance of wheat seedlings. J. Soil Sci. Plant Nut. 17(3):554–569.

    Article  CAS  Google Scholar 

  • Egamberdieva, D. 2009. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol. Plant. 31(4):861–864.

    Article  CAS  Google Scholar 

  • El-Hendawy, S.E., Hu, Y.C., Schmidhalter, U. 2005. Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances. Aust. J. Agr. Res. 56(2):123–134.

    Article  CAS  Google Scholar 

  • El-Sayed, O.M., El-Gammal, O.H.M., Salama, A.S.M. 2014. Effect of ascorbic acid, proline and jasmonic acid foliar spraying on fruit set and yield of Manzanillo olive trees under salt stress. Sci. Hortic.-Amsterdam 176:32–37.

    Article  CAS  Google Scholar 

  • Giannopolitis, C.N., Ries, S.K. 1977. Superoxide dismutases 1. Occurrence in higher plants. Plant Physiol. 59(2):309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gururani, M.A., Upadhyaya, C.P., Baskar, V., Venkatesh, J., Nookaraju, A., Park, S.W. 2013. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J. Plant Growth Regul. 32(2):245–258.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Hossain, M.A., Fujita, M. 2011. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol. Rep. 5(4):353–365.

    Article  Google Scholar 

  • Herrero, S., Daub, M.E. 2007. Genetic manipulation of Vitamin B-6 biosynthesis in tobacco and fungi uncovers limitations to up-regulation of the pathway. Plant Sci. 172(3):609–620.

    Article  CAS  Google Scholar 

  • Jisha, K.C., Vijayakumari, K., Puthur, J.T. 2013. Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant. 35(5):1381–1396.

    Article  Google Scholar 

  • Kochba, J., Lavee, S., Spiegelroy, P. 1977. Differences in peroxidase-activity and isoenzymes in embryogenic and non-embryogenic Shamouti orange ovular callus lines. Plant Cell Physiol. 18(2):463–467.

    Article  CAS  Google Scholar 

  • Li, B., Wang, Z.C., Sun, Z.G., Chen, Y., Yang, F. 2005. Resources and sustainable resource exploitation of salinized land in China. Agricultural Research in the Arid Areas 23(2):154–158.

    Google Scholar 

  • Li, J., Sun, C.Y., Yu, N., Wang, C., Zhang, T.T., Bu, H.Y. 2016. Hexaconazole-Cu complex improves the salt tolerance of Triticum aestivum seedlings. Pestic. Biochem. Phys. 127:90–94.

    Article  CAS  Google Scholar 

  • Mahajan, S., Pandey, G.K., Tuteja, N. 2008. Calcium- and salt-stress signaling in plants: Shedding light on SOS pathway. Archives of Biochemistry and Biophysics 471(2):146–158.

    Article  CAS  PubMed  Google Scholar 

  • Mooney, S., Hellmann, H. 2010. Vitamin B6: Killing two birds with one stone? Phytochemistry 71(5–6): 495–501.

    Article  CAS  PubMed  Google Scholar 

  • Moradi, F., Ismail, A.M. 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann. Bot.-London 99(6):1161–1173.

    Article  CAS  Google Scholar 

  • Munns, R., Gilliham, M. 2015. Salinity tolerance of crops – what is the cost? New Phytol. 208(3):668–673.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., Wallace, P.A., Teakle, N.L., Colmer, T.D. 2010. Measuring soluble ion concentrations (Na+, K+, Cl) in salt-treated plants. Methods in molecular biology (Clifton, N.J.) 639:371–382.

    Article  CAS  Google Scholar 

  • Porcel, R., Azcon, R., Ruiz-Lozano, J.M. 2004. Evaluation of the role of genes encoding for Delta(1)-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal glycine max and Lactuca sativa plants. Physiological and Molecular Plant Pathology 65(4):211–221.

    Article  CAS  Google Scholar 

  • Qiu, Z., Guo, J., Zhu, A., Zhang, L., Zhang, M. 2014. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotox. Environ. Safe. 104:202–208.

    Article  CAS  Google Scholar 

  • Ramezani, A., Niazi, A., Abolimoghadam, A.A., Babgohari, M.Z., Deihimi, T., Ebrahimi, M., Akhtardanesh, H., Ebrahimie, E. 2013. Quantitative expression analysis of TaSOS1 and TaSOS4 genes in cultivated and wild wheat plants under salt stress. Mol. Biotechnol. 53(2):189–197.

    Article  CAS  PubMed  Google Scholar 

  • Rao, K.V.M., Sresty, T.V.S. 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157(1):113–128.

    Article  Google Scholar 

  • Seckin, B., Sekmen, A.H., Turkan, I. 2009. An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J. Plant Growth Regul. 28(1):12–20.

    Article  CAS  Google Scholar 

  • Shalata, A., Neumann, P.M. 2001. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J. Exp. Bot. 52(364):2207–2211.

    Article  CAS  PubMed  Google Scholar 

  • Shi, H.Z., Lee, B.H., Wu, S.J., Zhu, J.K. 2003. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol. 21(1):81–85.

    Article  CAS  PubMed  Google Scholar 

  • Shi, S.Y., Wang, G., Wang, Y.D., Zhang, L.G., Zhang, L.X. 2005. Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide-Biol. Ch. 13(1):1–9.

    Article  CAS  Google Scholar 

  • Song, Y.L., Dong, Y.J., Tian, X.Y., Kong, J., Bai, X.Y., Xu, L.L., He, Z.L. 2016. Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency. Biol. Plantarum 60(2):329–342.

    Article  CAS  Google Scholar 

  • Talaat, N.B., Shawky, B.T. 2014. Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ. Exp. Bot. 98:20–31.

    Article  CAS  Google Scholar 

  • Tambasco-Studart, M., Titiz, O., Raschle, T., Forster, G., Amrhein, N., Fitzpatrick, T.B. 2005. Vitamin B6 biosynthesis in higher plants. P. Natl. Acad. Sci. USA 102(38):13687–13692.

    Article  CAS  Google Scholar 

  • Titiz, O., Tambasco-Studart, M., Warzych, E., Apel, K., Amrhein, N., Laloi, C., Fitzpatrick, T.B. 2006. PDX1 is essential for vitamin B6 biosynthesis, development and stress tolerance in Arabidopsis. Plant J. 48(6):933–946.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H.B., Liu, D.C., Liu, C.G., Zhang, A.M. 2004. The pyridoxal kinase gene TaPdxK from wheat complements vitamin B-6 synthesis-defective Escherichia coli. J. Plant Physiol. 161(9):1053–1060.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J.L., Huang, X.J., Zhong, T.Y., Chen, Z.G. 2011. Review on sustainable utilization of salt-affected land. Acta Geographica Sinica 66 (5):673–684.

    Google Scholar 

  • Xu, H.X., Jiang, X.Y., Zhan, K.H., Cheng, X.Y., Chen, X.J., Pardo, J.M., Cui, D.Q. 2008. Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Arch. Biochem. Biophys. 473(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Huang, H., Dai, S.L. 2014. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium. Gene 537(2):203–213.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S.W., Gan, Y.T., Xu, B.L. 2016. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front. Plant. Sci. 7.

  • Zou, P., Li, K.C., Liu, S., Xing, R.G., Qin, Y.K., Yu, H.H., Zhou, M.M., Li, P.C. 2015. Effect of chitooligosaccharides with different degrees of acetylation on wheat seedlings under salt stress. Carbohyd. Polym. 126:62–69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Zhang or Y. Wu.

Additional information

Communicated by A. Goyal

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Zhang, Q.N., Lu, J. et al. The Effects of Exogenous Pyridoxal-5-phosphate on Seedling Growth and Development of Wheat under Salt Stress. CEREAL RESEARCH COMMUNICATIONS 47, 442–454 (2019). https://doi.org/10.1556/0806.47.2019.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/0806.47.2019.22

Keywords

Navigation