Skip to main content
Log in

Physiological Responses of Spring Wheat to 5-Aminolevulinic Acid under Water Stress Applied at Seedling Stage

  • Physiology
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

5-Aminolevulinic acid relieves the effects of environmental stresses in plants. Therefore, the aim of our study was to evaluate the effects of 5-aminolevulinic acid (5-ALA) on the activity of the photosynthetic apparatus in spring wheat. Other analyzed parameters involved plant height, relative turgidity, membrane status, and chlorophyll level. The plant material consisted of three genotypes of spring wheat (J × Z, R × K, K × M), subjected to mild and severe drought in the early phase of vegetative development.

5-ALA showed a positive effect on the activity of the photosynthetic apparatus under water stress. The relieving action of 5-ALA on PSII was the most evident in J × Z genotype during severe soil drought. 5-ALA positively influenced the maximum photochemical efficiency of PSII (Fv/Fm), the overall performance index of PSII photochemistry (PI) and the effective quantum field of PSII (φEo). In the same genotype, the investigated acid stimulated light energy absorption (ABS/CSm), and enhanced the amount of excitation energy trapped in PSII reaction centers (TRo/CSm) and the amount of energy used for electron transport (ETo/CSm).

Moreover, 5-aminolevulinic acid showed its potential to overcome the adverse effects of water deficit on Triticum aestivum L. by increasing plant growth, relative turgidity, and chlorophyll content and reducing the degree of damage to cell membranes at the early phase of vegetative development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

5-ALA:

5-aminolevulinic acid

ABS/CSm:

light energy absorption

Chl:

chlorophyll

CSm:

leaf cross-section

DIo/CSm:

energy amount dissipated from PSII

EL:

electrolyte leakage

ETo/CSm:

amount of energy used for electron transport

Fv/Fm:

quantum yield of PSII

MWC:

maximum water holding capacity

PI:

overall performance index of PSII photochemistry

RC/CSm:

number of active reaction centers

RT:

relative turgidity

TRo/CSm:

amount of excitation energy trapped in PSII reaction centers

φEo:

quantum yield of electron transport

References

  • Ahmad, R., Ali, S., Hannan, F., Rizwan, M., Iqbal, M., Hassan, Z., Akram, N.A., Maqbool, S., Abbas, F. 2017. Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleracea botrytis L.). Environ. Sci. Pollut. Res. 24:8814–8824.

    Article  CAS  Google Scholar 

  • Akram, N.A., Ashraf, M., Al-Qurainy, F. 2012. Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Sci. Hortic. 142:143–148.

    Article  CAS  Google Scholar 

  • Akram, N.A., Ashraf, M. 2013. Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J. Plant Growth Regul. 32:663–679.

    Article  CAS  Google Scholar 

  • Akram, N.A., Iqbal, M., Muhammad, A., Ashraf, M., Al-Qurainy, F., Shafiq, S. 2018. Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress. Protoplasma 255:163–174.

    Article  CAS  Google Scholar 

  • Ali, B., Wang, B., Ali, S., Ghani, M.A., Hayat, M.T., Yang, C., Xu, L., Zhou, W.J. 2013. 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J. Plant Growth Regul. 32:604–614.

    Article  CAS  Google Scholar 

  • Al-Khateeb, S.A. 2006. Promotive effect of 5-aminolevulinic acid on growth, yield and gas exchange capacity of barley (Hordeum vulgare L.) grown under different irrigation regimes. J. King Saud Univ. Agric. Sci. 18:103–111.

    Google Scholar 

  • Al-Thabet, S.S. 2006. Promotive effect of 5-aminolevulinic acid on growth and yield of wheat grown under dry conditions. J. Agron. 5:45–49.

    Article  Google Scholar 

  • Appenroth, K.J., Stöckel, J., Srivastava, A., Strasser, R.J. 2001. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ. Pollut. 115:49–64.

    Article  CAS  Google Scholar 

  • Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant. Physiol. 24:1–15.

    Article  CAS  Google Scholar 

  • Balestrasse, K.B., Tomaro, M.L., Batlle, A., Noriega, G.O. 2010. The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry 71:2038–2045.

    Article  CAS  Google Scholar 

  • Barrs, H.D., Weatherley, P.E. 1962. A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Aust. J. Biol. Sci. 15:413–428.

    Article  Google Scholar 

  • Gietler, M., Nykiel, M., Orzechowski, S., Fettke, J., Zagdańska, B. 2017. Protein carbonylation linked to wheat seedling tolerance to water deficiency. Environ. Exp. Bot. 137:84–95.

    Article  CAS  Google Scholar 

  • Gill, R.A., Ali, B., Islam, F., Farooq, M.A., Gill, M.B., Mwamba, T.M., Zhou, W. 2015. Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress. Plant Physiol. Bioch. 94:130–143.

    Article  CAS  Google Scholar 

  • Hura, T., Hura, K., Ostrowska, A., Dziurka, K. 2015. Rapid plant rehydration initiates permanent and adverse changes in the photosynthetic apparatus of triticale. Plant Soil 97:127–145.

    Article  Google Scholar 

  • Jaspars, E.M.J. 1965. Pigmentation of tobacco crown-gall tissues cultured in vitro in dependence of the composition of the medium. Physiol. Plant 18:933–940.

    Article  CAS  Google Scholar 

  • Korkmaz, A., Korkmaz, Y. 2009. Promotion by 5-aminolevulenic acid of pepper seed germination and seedling emergence under low-temperature stress. Sci. Hortic. 119:98–102.

    Article  CAS  Google Scholar 

  • Korkmaz, A., Korkmaz, Y., Demirkiran, A.R. 2010. Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ. Exp. Bot. 67:495–501.

    Article  CAS  Google Scholar 

  • Kosar, F., Akrama, N.A., Ashraf, M. 2015. Exogenously-applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. S. Afr. J. Bot. 96:71–77.

    Article  CAS  Google Scholar 

  • Lazár, D. 1999. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta 1412:1–28.

    Article  Google Scholar 

  • Lichtenthaler, H.K., Rinderle, U. 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRT Crit. Rev. Anal. Chem. 19:29–85.

    Article  Google Scholar 

  • Liu, M., Li, J., Niu, J., Wang, R., Song, J., Lv, J., Zong, X., Wang, S. 2016. Interaction of drought and 5-aminolevulinic acid on growth and drought resistance of Leymus chinensis seedlings. Acta Ecol. Sin. 36:180–188.

    Article  CAS  Google Scholar 

  • Memon, S.A., Hou, X., Wang, L., Li, Y. 2009. Promotive effect of 5-aminolevulinic acid on chlorophyll, anti-oxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. Chinensis var. communis Tsen et Lee). Acta Physiol. Plant. 31:51–57.

    Article  CAS  Google Scholar 

  • Naeem, M.S., Rasheed, M., Liu, D., Jin, Z.L., Ming, D.F., Yoneyama, K., Takeuchi, Y., Zhou, W.J. 2011. 5-Aminolevulinic acid ameliorates salinity-induced metabolic, water-related and biochemical changes in Brassica napus L. Acta Physiol. Plant. 33:517–528.

    Article  CAS  Google Scholar 

  • Nishihara, E., Kondo, K., Parvez, M.M., Takahashi, K., Watanabe, K., Tanaka, K. 2003. Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). J. Plant Physiol. 160:1085–1091.

    Article  CAS  Google Scholar 

  • Rebeiz, C.A., Reddy, K.N., Nandihalli, U.B., Velu, J. 1990. Tetrapyrrole-dependent photodynamic herbicides. Photochem. Photobiol. 52:1099–1117.

    Article  CAS  Google Scholar 

  • Srivastava, A., Strasser, R.J. 1977. Constructive and destructive actions of light on the photosynthetic apparatus. J. Sci. Industrial Res. 56:133–148.

    Google Scholar 

  • Strasser, R.J., Srivastava, A., Tsimilli-Michael, M. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P. (eds), Probing photosynthesis: Mechanism, regulation and adaptation. Taylor and Francis, London, pp. 445–483.

  • Sun, Y.P., Zhang, Z.P., Wang, L.J. 2009. Promotion of 5-aminolevulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings under shade condition. Photosynthetica 47:347–354.

    Article  CAS  Google Scholar 

  • Van Der Tol, C., Verhoef, W., Rosema, A. 2009. A model for chlorophyll fluorescence and photosynthesis at leaf scale. Agric. For. Meteorol. 149:96–105.

    Article  Google Scholar 

  • Von Wettstein, D., Gough, S., Kananagara, C.G. 1995. Chlorophyll biosynthesis. Plant Cell 7:1039–1105.

    Article  Google Scholar 

  • Wang, Y., Wei, S., Wang, J., Su, X., Suo, B., Qin, F., Zhao, H. 2018. Exogenous application of 5-aminole-vulinic acid on wheat seedlings under drought stress enhances the transcription of psbA and psbD genes and improves photosynthesis. Braz. J. Bot. (doi:10.1007/s40415-018-0455-y).

    Article  CAS  Google Scholar 

  • Xu, F., Zhu, J., Cheng, S., Zhang, W., Wang, Y. 2010. Effect of 5-aminolevulinic acid on photosynthesis, yield, nutrition and medicinal values of kudzu (Pueraria phaseoloides). Trop. Grasslands 44:260–265.

    Google Scholar 

  • Zhang, Z.J., Li, H.Z., Zhou, W.J., Takeuchi, Y., Yoneyama, K. 2006. Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul. 49:27–34.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ostrowska.

Additional information

Communicated by R.K. Behl

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrowska, A., Biesaga-Kościelniak, J., Grzesiak, M.T. et al. Physiological Responses of Spring Wheat to 5-Aminolevulinic Acid under Water Stress Applied at Seedling Stage. CEREAL RESEARCH COMMUNICATIONS 47, 32–41 (2019). https://doi.org/10.1556/0806.46.2018.060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/0806.46.2018.060

Keywords

Navigation