Skip to main content
Log in

Bogolyubov-Type Theorem with Constraints Generated by a Fractional Control System

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We first study the existence results and properties of the solution set of a control system described by fractional differential equations with nonconvex control constraint. Then a problem of minimizing an integral functional over the solution set of the control system is considered. Along with the original minimizing problem, we also consider the problem of minimizing the integral functional whose integrand is the bipolar (with respect to the control variable) of the original integrand over the solution set of the same system but with the convexified control constraint. We prove that the relaxed problem has an optimal solution and obtain some relationships between these two minimizing problems. Finally, an example is given to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.B. Bai., On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72, No 2 (2010), 916–924. DOI: 10.1016/j.na.2009.07.033.

    Article  MathSciNet  Google Scholar 

  2. K. Balachandran, J. Kokila, J.J. Trujillo., Relative controllability of fractional dynamical systems with multiple delays in control. Comput. Math. Appl. 64, No 10 (2012), 3037–3045. DOI: 10.1016/j.camwa.2012.01.071.

    Article  MathSciNet  Google Scholar 

  3. K. Balachandran, J.Y. Park., J.J. Trujillo., Controllability of nonlinear fractional dynamical systems. Nonlinear Anal. 75 (2012), 1919–1926. DOI: 10.1016/j.na.2011.09.042.

    Article  MathSciNet  Google Scholar 

  4. D. Băleanu, J.A.T. Machado., A.C.J. Luo., Fractional Dynamics and Control. Springer, New York (2012).

    Book  Google Scholar 

  5. M. Benchohra, S. Hamani, S.K. Ntouyas., Boundary value problems for differential equations with fractional order. Surv. Math. Appl. 3 (2008), 1–12.

    MathSciNet  MATH  Google Scholar 

  6. N.N. Bogolyubov., Sur quelques méthodes nouvelles dans le calcul des variations. Ann. Mat. Pura Appl. 7 (1930), 249–271.

    Article  Google Scholar 

  7. A. Cernea, On the existence of solutions for fractional differential inclusions with anti-periodic boundary conditions. J. Appl. Math. Comput. 38 (2012), 133–143. DOI: 10.1007/s12190-010-0468-6.

    Article  MathSciNet  Google Scholar 

  8. A. Debbouchea, D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl. 62 (2011), 1442–1450. DOI: 10.1016/j.camwa.2011.03.075.

    Article  MathSciNet  Google Scholar 

  9. F.S. De. Blasi, G. Pianigiani, A.A. Tolstonogov., A bogolyubov-type theorem with a nonconvex constraint in banach spaces. SIAM J. Control Optim. 43, No 2 (2004), 466–476. DOI: 10.1137/S0363012903423156.

    Article  MathSciNet  Google Scholar 

  10. J. Dixon, S. McKee, Weakly Singular Discrete Gronwall Inequalities. ZAMM·Z. Angew. Math. Mech. 68, No 11 (1986), 535–544. DOI: 10.1002/zamm.19860661107.

    Article  MathSciNet  Google Scholar 

  11. A. Dzieliński, W. Malesza, Point to point control of fractional differential linear control systems. Adv. Differ. Equ. 2011 (2011), 13; DOI: 10.1186/1687-1847-2011-13.

    Article  MathSciNet  Google Scholar 

  12. I. Ekeland, R. Temam, Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976).

    MATH  Google Scholar 

  13. S.C. Hu., N.S. Papageorgiou., Handbook of Multivalued Analysis: Volume I: Theory. Kluwer Academic Publishers, Dordrecht-Boston-London (1997).

    Book  Google Scholar 

  14. A.D. Ioffe., On lower semicontinuity of integral functionals, I. SIAM J. Control Optim. 15, No 4 (1977), 521–538. DOI: 10.1137/0315035.

    Article  MathSciNet  Google Scholar 

  15. A.A. Kilbas., S.A. Marzan., Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differential Equations 41 (2005), 84–89. DOI: 10.1007/s10625-005-0137-y.

    Article  MathSciNet  Google Scholar 

  16. A.A. Kilbas., H.M. Srivastava., J.J. Trujillo., Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V, Amsterdam (2006).

    MATH  Google Scholar 

  17. X.P. Li., F.L. Chen., X.Z. Li., Generalized anti-periodic boundary value problems of impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 28–41. DOI: 10.1016/j.cnsns.2012.06.014.

    Article  MathSciNet  Google Scholar 

  18. X.Y. Liu., X. Fu, Control systems described by a class of fractional semilinear evolution equations and their relaxation property. Abstr. Appl. Anal. 2012 (2012), Article ID 850529, 20 p.; DOI: 10.1155/2012/850529.

    MathSciNet  MATH  Google Scholar 

  19. X.Y. Liu., Y.L. Liu., Fractional differential equations with fractional non-separated boundary conditions. Electron. J. Diff. Equ. 2013 (2013), # 25, 13 p.

    Article  MathSciNet  Google Scholar 

  20. Z.H. Liu., X.W. Li., On the controllability of impulsive fractional evolution inclusions in Banach spaces. J. Optim. Theory Appl. 156 (2013), 167–182. DOI: 10.1007/s10957-012-0236-x.

    Article  MathSciNet  Google Scholar 

  21. Z.H. Liu., J.H. Sun., Nonlinear boundary value problems of fractional differential systems. Comput. Math. Appl. 64, No 4 (2012), 463–475. DOI: 10.1016/j.camwa.2011.12.020.

    Article  MathSciNet  Google Scholar 

  22. E.J. MacShane., Existence theorems for Bolza problems in the calculus of variations. Duke Math. J. 7, No 1 (1940), 28–61.

    MathSciNet  Google Scholar 

  23. S. Migórski, Existence and relaxation results for nonlinear evolution inclusions revisited. J. Appl. Math. Stoch. Anal. 8, No 2 (1995), 143–149.

    Article  MathSciNet  Google Scholar 

  24. S. Migórski, Existence and relaxation results for nonlinear second order evolution inclusions. Discuss. Math. Differ. Incl. Control Optim. 15 (1995), 129–148.

    MathSciNet  MATH  Google Scholar 

  25. K.S. Miller., B. Ross, An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993).

    MATH  Google Scholar 

  26. J. Sabatier, O.P. Agrawal., J.A.T. Machado. (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007).

    Book  Google Scholar 

  27. S.I. Suslov., The Bogolyubov theorem with a differential inclusion as constraint. Siberian Math. J. 35, No 4 (1994), 802–814. DOI: 10.1007/BF02106624.

    Article  MathSciNet  Google Scholar 

  28. Z.X. Tai., X.C. Wang., Controllability of fractional-order impulsive neutral functional infinite delay integrodifferential systems in Banach spaces. Appl. Math. Lett. 22 (2009), 1760–1765. DOI: 10.1016/j.aml.2009.06.017.

    Article  MathSciNet  Google Scholar 

  29. S.A. Timoshin., A.A. Tolstonogov., Bogolyubov-type theorem with constraints induced by a control system with hysteresis effect. Nonlinear Anal. 75 (2012), 5884–5893. DOI: 10.1016/j.na.2012.05.028.

    Article  MathSciNet  Google Scholar 

  30. A.A. Tolstonogov., Bogolyubov’s theorem under constraints generated by a controlled second-order evolution system. Izv. Math. 67, No 5 (2003), 1031–1060. DOI: 10.1070/IM2003v067n05ABEH000456.

    Article  MathSciNet  Google Scholar 

  31. A.A. Tolstonogov., Bogolyubov’s theorem under constraints generated by a lower semicontinuous differential inclusion. Sb. Math. 196, No 2 (2005), 263–285. DOI: 10.1070/SM2005v196n02ABEH000880.

    Article  MathSciNet  Google Scholar 

  32. A.A. Tolstonogov., Relaxation in non-convex control problems described by first-order evolution equations. Mat. Sb. 190, No 11 (1999), 135–160. Engl. transl., Sb. Math. 190 (1999), 1689–1714. DOI: 10.1070/SM1999v190n11ABEH000441.

    Article  MathSciNet  Google Scholar 

  33. A.A. Tolstonogov., D.A. Tolstonogov., Lp-continuous extreme selectors of multifunctions with decomposable values: Existence theorems. Set-Valued Anal. 4 (1996), 173–203. DOI: 10.1007/BF00425964.

    Article  MathSciNet  Google Scholar 

  34. A.A. Tolstonogov., D.A. Tolstonogov., Lp-continuous extreme selectors of multifunctions with decomposable values: Relaxation theorems. Set-Valued Anal. 4 (1996), 237–269. DOI: 10.1007/BF00419367.

    Article  MathSciNet  Google Scholar 

  35. G.T. Wang., B. Ahmad, L.H. Zhang., Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 74, No 3 (2011), 792–804. DOI: 10.1016/j.na.2010.09.030.

    Article  MathSciNet  Google Scholar 

  36. J.R. Wang., M. Fečkan, Y. Zhou, Relaxed controls for nonlinear fractional impulsive evolution equations. J. Optim. Theory Appl. 156, No 1 (2013), 13–32. DOI: 10.1007/s10957-012-0170-y.

    Article  MathSciNet  Google Scholar 

  37. J.R. Wang., L.L. Lv., Y. Zhou, Boundary value problems for fractional differential equations involving Caputo derivative in Banach spaces. J. Appl. Math. Comput. 38 (2012), 209–224. DOI: 10.1007/s12190-011-0474-3.

    Article  MathSciNet  Google Scholar 

  38. J.R. Wang., Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal.-Real World Appl. 12, No 6 (2011), 3642–3653. DOI: 10.1016/j.nonrwa.2011.06.021.

    Article  MathSciNet  Google Scholar 

  39. J. Wei, The controllability of fractional control systems with control delay. Comput. Math. Appl. 64, No 10 (2012), 3153–3159. DOI: 10.1016/j.camwa.2012.02.065.

    Article  MathSciNet  Google Scholar 

  40. Q.J. Zhu., On the solution set of differential inclusions in Banach space. J. Differ. Equat. 93, No 2 (1991), 213–237. DOI: 10.1016/0022-0396(91)90011-W.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Xiaoyou.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaoyou, L., Youjun, X. Bogolyubov-Type Theorem with Constraints Generated by a Fractional Control System. FCAA 19, 94–115 (2016). https://doi.org/10.1515/fca-2016-000

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-000

MSC

Key Words

Navigation