Skip to main content
Log in

Relaxed Controls for Nonlinear Fractional Impulsive Evolution Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study optimal relaxed controls and relaxation of nonlinear fractional impulsive evolution equations. Firstly, existence of piecewise continuous mild solutions for the original fractional impulsive control system is presented. Secondly, fractional impulsive relaxed control system is constructed by using a regular countably additive measure and making the original control system convexified. Thirdly, optimal relaxed controls and relaxation theorems are obtained. Finally, application to initial-boundary value problem of fractional impulsive parabolic control system is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baleanu, D., Machado, J.A.T., Luo, A.C.-J.: Fractional Dynamics and Control. Springer, New York (2012)

    Book  MATH  Google Scholar 

  2. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics. Springer, New York (2010)

    Book  MATH  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: In: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  4. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific, Cambridge (2010)

    Google Scholar 

  5. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  6. Michalski, M.W.: Derivatives of Noninteger Order and Their Applications. Dissertationes Mathematicae, CCCXXVIII, Inst. Math., Polish Acad. Sci., Warsaw (1993)

  7. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  8. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2010)

    Google Scholar 

  9. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ahmad, B., Nieto, J.J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray–Schauder degree theory. Topol. Methods Nonlinear Anal. 35, 295–304 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72, 916–924 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bai, Z., Lu, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340–1350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mophou, G.M., N’Guérékata, G.M.: Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay. Appl. Math. Comput. 216, 61–69 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, J., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal.: Real World Appl. 12, 262–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, J., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal.: Real World Appl. 12, 3642–3653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, J., Zhou, Y.: Analysis of nonlinear fractional control systems in Banach spaces. Nonlinear Anal. 74, 5929–5942 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, J., Zhou, Y., Medved’, M.: On the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay. J. Optim. Theory Appl. 152, 31–50 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, J., Fan, Z., Zhou, Y.: Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. J. Optim. Theory Appl. 154, 292–302 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, J., Zhou, Y., Wei, W.: Optimal feedback control for semilinear fractional evolution equations in Banach spaces. Syst. Control Lett. 61, 472–476 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, J., Zhou, Y., Wei, W.: Fractional Schrödinger equations with potential and optimal controls. Nonlinear Anal.: Real World Appl. 13, 2755–2766 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, J., Lv, L., Zhou, Y.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2530–2538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, S.: Existence of positive solution for some class of nonlinear fractional differential equations. J. Math. Anal. Appl. 278, 136–148 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063–1077 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal.: Real World Appl. 11, 4465–4475 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, Y., Jiao, F.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifurc. Chaos Appl. Sci. Eng. 22(1250086), 1–17 (2012)

    MathSciNet  Google Scholar 

  27. Wang, R.N., Chen, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kumar, S., Sukavanam, N.: Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equ. 252, 6163–6174 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, F., Liang, J., Xu, H.K.: Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, 510–525 (2012)

    Article  MATH  Google Scholar 

  30. Li, K., Peng, J., Jia, J.: Cauchy problems for fractional differential equations with Riemann–Liouville fractional derivatives. J. Funct. Anal. 263, 476–510 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions, vol. 2. Hindawi Publishing Corporation, New York (2006)

    Book  MATH  Google Scholar 

  32. Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific and Technical Group Limited, New York (1993)

    MATH  Google Scholar 

  33. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  34. Yang, T.: Impulsive Control Theory. Springer, Berlin (2001)

    MATH  Google Scholar 

  35. Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differ. Equ. 246, 3834–3863 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ahmed, N.U.: Existence of optimal controls for a general class of impulsive systems on Banach space. SIAM J. Control Optim. 42, 669–685 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ahmed, N.U.: Optimal feedback control for impulsive systems on the space of finitely additive measures. Publ. Math. (Debr.) 70, 371–393 (2007)

    MATH  Google Scholar 

  38. Akhmed, M.U.: On the smoothness of solutions of impulsive autonomous systems. Nonlinear Anal. 60, 311–324 (2005)

    MathSciNet  Google Scholar 

  39. Fan, Z., Li, G.: Existence results for semilinear differential equations with nonlocal and impulsive conditions. J. Funct. Anal. 258, 1709–1727 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Fan, Z.: Impulsive problems for semilinear differential equations with nonlocal conditions. Nonlinear Anal. 72, 1104–1109 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Liang, J., Liu, J.H., Xiao, T.J.: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces. Math. Comput. Model. 49, 798–804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, J.: Nonlinear impulsive evolution equations. Dyn. Contin. Discrete Impuls. Syst. 6, 77–85 (1999)

    MATH  Google Scholar 

  43. Battelli, F., Fec̆kan, M.: Chaos in singular impulsive O.D.E. Nonlinear Anal. 28, 655–671 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mophou, G.M.: Existence and uniqueness of mild solution to impulsive fractional differential equations. Nonlinear Anal. 72, 1604–1615 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nieto, J.J., O’Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal.: Real World Appl. 10, 680–690 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, J., Xiang, X., Peng, Y.: Periodic solutions of semilinear impulsive periodic system on Banach space. Nonlinear Anal. 71, e1344–e1353 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, J., Wei, W.: A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces. Results Math. 58, 379–397 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wei, W., Xiang, X., Peng, Y.: Nonlinear impulsive integro-differential equation of mixed type and optimal controls. Optimization 55, 141–156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wei, W., Hou, S.H., Teo, K.L.: On a class of strongly nonlinear impulsive differential equation with time delay. Nonlinear Dyn. Syst. Theory 6, 281–293 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Wang, J., Fec̆kan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 8, 345–361 (2011)

    MathSciNet  MATH  Google Scholar 

  51. Ahmed, N.U.: Properties of relaxed trajectories for a class of nonlinear evolution equations on a Banach space. SIAM J. Control Optim. 21, 953–967 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  52. Papageorgious, N.S.: Properties of the relaxed trajectories of evolutions and optimal control. SIAM J. Control Optim. 27, 267–288 (1989)

    Article  MathSciNet  Google Scholar 

  53. Xiang, X., U, A.N.: Properties of relaxed trajectories of evolution equations and optimal control. SIAM J. Control Optim. 31, 1135–1142 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xiang, X., Sattayatham, P., Wei, W.: Relaxed controls for a class of strongly nonlinear delay evolution equations. Nonlinear Anal. 52, 703–723 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Pongchalee, P., Sattayatham, P., Xiang, X.: Relaxation of nonlinear impulsive controlled systems on Banach spaces. Nonlinear Anal. 68, 1570–1580 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Fattorini, H.O.: Infinite Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  58. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  59. Warga, J.: Optimal Control of Differential and Functional Differential Equations. Springer, New York (1996)

    Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their careful reading of the manuscript and insightful comments. We also acknowledge the valuable comments and suggestions from the editors. Finally, J. Wang acknowledges the support by National Natural Science Foundation of China (11201091) and Key Projects of Science and Technology Research in the Chinese Ministry of Education (211169); M. Fec̆kan acknowledges the support by Grants VEGA-MS 1/0507/11, VEGA-SAV 2/0124/12 and APVV-0414-07 and Y. Zhou acknowledges the support by National Natural Science Foundation of China (11271309), Specialized Research Fund for the Doctoral Program of Higher Education (20114301110001) and Key Projects of Hunan Provincial Natural Science Foundation of China (12JJ2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Fec̆kan.

Additional information

Communicated by Franco Giannessi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Fec̆kan, M. & Zhou, Y. Relaxed Controls for Nonlinear Fractional Impulsive Evolution Equations. J Optim Theory Appl 156, 13–32 (2013). https://doi.org/10.1007/s10957-012-0170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0170-y

Keywords

Navigation