Skip to main content
Log in

Dual Task Performance Is Associated with Amyloidosis in Cognitively Healthy Adults

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

Preclinical Alzheimer’s disease (AD) provides an opportunity for the study and implementation of interventions and strategies aimed at delaying, mitigating, and preventing AD. While this preclinical state is an ideal target, it is difficult to identify efficiently and cost-effectively. Recent findings have suggested that cognitive-motor dual task paradigms may provide additional inference.

Objectives

Investigate the relationship between dual task performance and amyloidosis, suggestive of preclinical Alzheimer’s disease and whether dual task performance provides additional information beyond a cognitive composite, to help in the identification of amyloidosis.

Design

Cross-sectional.

Setting

Outpatient specialty brain health clinical research institution in the United States.

Participants

52 cognitively healthy adults.

Measurements

The data included demographics, amyloid standardized uptake value ratio obtained via florbetapir-PET, neuropsychological testing, apolipoprotien E genotype, and dual task performance measures. Data were analyzed via hierarchal multiple linear regression or logistic regression, controlling for age, education, and apolipoprotien E genotype. Receiver operating characteristic curves were plotted, and sensitivity and specificity calculated via 2×2 contingency tables.

Results

There was a moderate relationship (rs>.30) between motor and cognitive dual task effects and amyloid standardized uptake value ratio (ps<.042). A strong relationship (r=.58) was found between combined dual task effect, a measure of automaticity derived from dual task performance, and amyloid standardized uptake value ratio (p<.001). Additionally, combined dual task effect showed promise in its unique contributions to amyloid standardized uptake value ratio, accounting for 7.8% of amyloid standardized uptake value ratio variance beyond cognitive composite scores (p=.018). Additionally, when incorporated into the cognitive composite, combined dual task effect resulted in improved diagnostic accuracy for determining elevated amyloid standardized uptake value ratio, and increased the sensitivity and specificity of the cognitive composite.

Conclussion

Dual task performance using the combined dual task effect, a measure of automaticity, was a moderate predictor of cerebral amyloidosis, which suggests that it has utility in the screening and diagnosis of individuals for preclinical AD. Additionally, when combined with the cognitive composite, the combined dual task effect improves diagnostic accuracy. Further research is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 2021 Alzheimer’s disease facts and figures. Alzheimer’s Dement 2021;17:327–406; https://doi.org/10.1002/alz.12328.

  2. Jack CR, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013;12:207–16; https://doi.org/10.1016/S1474-4422(12)70291-0.

    Article  CAS  Google Scholar 

  3. Sutphen CL, Jasielec MS, Shah AR, et al. Longitudinal cerebrospinal fluid biomarker changes in preclinical Alzheimer disease during middle age. JAMA Neurol 2015;72:1029–42; https://doi.org/10.1001/jamaneurol.2015.1285.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brookmeyer R, Abdalla N, Kawas CH, Corrada MM. Forecasting the prevalence of preclinical and clinical Alzheimer’s disease in the United States. Alzheimers Dement 2018;14:121–9; https://doi.org/10.1016/j.jalz.2017.10.009.

    Article  PubMed  Google Scholar 

  5. Cummings J, Lee G, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y) 2018;4:195–214; https://doi.org/10.1016/j.trci.2018.03.009.

    Article  Google Scholar 

  6. Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 2014;6:37; https://doi.org/10.1186/alzrt269.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aisen PS, Vellas B, Hampel H. Moving towards early clinical trials for amyloid-targeted therapy in Alzheimer’s disease. Nat Rev Drug Discov 2013;12:324; https://doi.org/10.1038/nrd3842-c1.

    Article  CAS  PubMed  Google Scholar 

  8. Rice L, Bisdas S. The diagnostic value of FDG and amyloid PET in Alzheimer’s disease-A systematic review. Eur J Radiol 2017;94:16–24; https://doi.org/10.1016/j.ejrad.2017.07.014.

    Article  PubMed  Google Scholar 

  9. Jack CR, Knopman DS, Weigand SD, et al. An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol 2012;71:765–75; https://doi.org/10.1002/ana.22628.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 2011;7:280–92; https://doi.org/10.1016/j.jalz.2011.03.003.

    Article  Google Scholar 

  11. Ahman HB, Berglund L, Cedervall Y, et al. Dual-task tests predict conversion to dementia—a prospective memory-clinic-based cohort study. Int J Environ Res Public Health 2020;17:1–14; https://doi.org/10.3390/ijerph17218129.

    Article  Google Scholar 

  12. Donohue MC, Sperling RA, Salmon DP, et al. The preclinical Alzheimer cognitive composite: Measuring amyloid-related decline. JAMA Neurol 2014;71:961–70; https://doi.org/10.1001/jamaneurol.2014.803.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bransby L, Lim YY, Ames D, et al. Sensitivity of a Preclinical Alzheimer’s Cognitive Composite (PACC) to amyloid beta load in preclinical Alzheimer’s disease. J Clin Exp Neuropsychol 2019;41:591–600; https://doi.org/10.1080/13803395.2019.1593949.

    Article  PubMed  Google Scholar 

  14. Gross AL, Hassenstab JJ, Johnson SC, et al. A classification algorithm for predicting progression from normal cognition to mild cognitive impairment across five cohorts: The preclinical AD consortium. Alzheimers Dement (Amst) 2017;8:147–55; https://doi.org/10.1016/j.dadm.2017.05.003.

    Article  Google Scholar 

  15. Montero-Odasso MM, Sarquis-Adamson Y, Speechley M, et al. Association of Dual-Task Gait With Incident Dementia in Mild Cognitive Impairment: Results From the Gait and Brain Study. JAMA Neurol 2017;74:857–65; https://doi.org/10.1001/jamaneurol.2017.0643.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Whitson HE, Potter GG, Feld JA, et al. Dual-Task Gait and Alzheimer’s Disease Genetic Risk in Cognitively Normal Adults: A Pilot Study. J Alzheimers Dis 2018;64:1137–48; https://doi.org/10.3233/jad-180016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nadkarni NK, Lopez OL, Perera S, et al. Cerebral amyloid deposition and dual-tasking in cognitively normal, mobility unimpaired older adults. Journals Gerontol — Ser A Biol Sci Med Sci 2017;72:431–7; https://doi.org/10.1093/gerona/glw211.

    Google Scholar 

  18. Åhman HB, Giedraitis V, Cedervall Y, et al. Dual-Task Performance and Neurodegeneration: Correlations Between Timed Up-and-Go Dual-Task Test Outcomes and Alzheimer’s Disease Cerebrospinal Fluid Biomarkers. J Alzheimers Dis 2019;71:S75–83; https://doi.org/10.3233/jad-181265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wu T, Hallett M, Chan P. Motor automaticity in Parkinson’s disease. Neurobiol Dis 2015;82:226–34; https://doi.org/10.1016/j.nbd.2015.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Longhurst JK, Wise MA, Krist DJ, Moreland CA, Basterrechea JA, Landers MR. Brain volumes and dual-task performance correlates among individuals with cognitive impairment: a retrospective analysis. J Neural Transm 2020; https://doi.org/10.1007/s00702-020-02199-7.

  21. Longhurst JK, Rider J V, Cummings JL, John SE, Poston B, Landers MR. A novel way of measuring dual task interference: the reliability and construct validity of the dual task effect battery in healthy adults and individuals with neurodegenerative disease. Under Rev n.d.

  22. Ritter A, Cummings J, Nance C, Miller JB. Neuroscience learning from longitudinal cohort studies of Alzheimer’s disease: Lessons for disease-modifying drug programs and an introduction to the Center for Neurodegeneration and Translational Neuroscience. Alzheimer’s Dement Transl Res Clin Interv 2018;4:350–6; https://doi.org/10.1016/j.trci.2018.06.006.

    Article  Google Scholar 

  23. Kelly VE, Janke AA, Shumway-Cook A. Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults. Exp Brain Res 2010;207:65–73; https://doi.org/10.1007/s00221-010-2429-6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang L, He C, Pang MY. Reliability and Validity of Dual-Task Mobility Assessments in People with Chronic Stroke. PLoS One 2016;11:e0147833; https://doi.org/10.1371/journal.pone.0147833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. McIsaac TL, Lamberg EM, Muratori LM. Building a framework for a dual task taxonomy. Biomed Res Int 2015;2015:591475; https://doi.org/10.1155/2015/591475.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang L, Lam FMH, Liao LR, Huang MZ, He CQ, Pang MYC. Psychometric properties of dual-task balance and walking assessments for individuals with neurological conditions: A systematic review. Gait Posture 2017;52:110–23; https://doi.org/10.1016/j.gaitpost.2016.11.007.

    Article  PubMed  Google Scholar 

  27. Decourt B, Wilson J, Ritter A, et al. MCLENA-1: A phase ii clinical trial for the assessment of safety, tolerability, and efficacy of lenalidomide in patients with mild cognitive impairment due to alzheimer’s disease. Open Access J Clin Trials 2020;12:1–13; https://doi.org/10.2147/OAJCT.S221914.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Camus V, Payoux P, Barré L, et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur J Nucl Med Mol Imaging 2012;39:621–31; https://doi.org/10.1007/s00259-011-2021-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lim YY, Snyder PJ, Pietrzak RH, et al. Sensitivity of composite scores to amyloid burden in preclinical Alzheimer’s disease: Introducing the Z-scores of Attention, Verbal fluency, and Episodic memory for Nondemented older adults composite score. Alzheimers Dement (Amst) 2016;2:19–26; https://doi.org/10.1016/j.dadm.2015.11.003.

    Article  Google Scholar 

  30. Hosmer DW, Lemeshow S, Sturdivant RX, Hosmer DWJ. Applied Logistic Regression. New York: John Wiley & Sons, Incorporated, 2013.

    Book  Google Scholar 

  31. Perkins NJ, Schisterman EF. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol 2006;163:670–5; https://doi.org/10.1093/aje/kwj063.

    Article  PubMed  Google Scholar 

  32. Bateman RJ, Xiong C, Benzinger TLS, et al. Clinical and Biomarker Changes in Dominantly Inherited Alzheimer’s Disease. N Engl J Med 2012;367:795–804; https://doi.org/10.1056/NEJMoa1202753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aizenstein HJ, Nebes RD, Saxton JA, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 2008;65:1509–17; https://doi.org/10.1001/archneur.65.11.1509.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006;66:1837–44; https://doi.org/10.1212/01.wnl.0000219668.47116.e6.

    Article  CAS  PubMed  Google Scholar 

  35. Lowe DA, MacAulay RK, Szeles DM, Milano NJ, Wagner MT. Dual-Task Gait Assessment in a Clinical Sample: Implications for Improved Detection of Mild Cognitive Impairment. J Gerontol B Psychol Sci Soc Sci 2020;75:1372–81; https://doi.org/10.1093/geronb/gbz119.

    Article  PubMed  Google Scholar 

  36. Kueper JK, Lizotte DJ, Montero-Odasso M, Speechley M. Cognition and motor function: The gait and cognition pooled index. PLoS One 2020;15:e0238690; https://doi.org/10.1371/journal.pone.0238690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Cock A-MM, Fransen E, Perkisas S, et al. Comprehensive Quantitative Spatiotemporal Gait Analysis Identifies Gait Characteristics for Early Dementia Subtyping in Community Dwelling Older Adults. Front Neurol 2019;10:313; https://doi.org/10.3389/fneur.2019.00313.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cullen S, Borrie M, Carroll S, et al. Are Cognitive Subtypes Associated with Dual-Task Gait Performance in a Clinical Setting? J Alzheimers Dis 2019;71:S57–64; https://doi.org/10.3233/jad-181196.

    Article  PubMed  Google Scholar 

  39. Beauchet O, Launay CP, Chabot J, Levinoff EJ, Allali G. Subjective memory impairment and gait variability in cognitively healthy individuals: Results from a cross-sectional pilot study. J Alzheimer’s Dis 2017;55:965–71; https://doi.org/10.3233/jad-160604.

    Article  Google Scholar 

  40. Ahman HB, Cedervall Y, Kilander L, et al. Dual-task tests discriminate between dementia, mild cognitive impairment, subjective cognitive impairment, and healthy controls — A cross-sectional cohort study. BMC Geriatr 2020;20:258; https://doi.org/10.1186/s12877-020-01645-1.

    Article  PubMed  PubMed Central  Google Scholar 

  41. MacAulay RK, Wagner MT, Szeles D, Milano NJ. Improving Sensitivity to Detect Mild Cognitive Impairment: Cognitive Load Dual-Task Gait Speed Assessment. J Int Neuropsychol Soc 2017;23:493–501; https://doi.org/10.1017/S1355617717000261.

    Article  PubMed  Google Scholar 

  42. MacAulay RK, Allaire T, Brouillette R, Foil H, Bruce-Keller AJ, Keller JN. Apolipoprotein E Genotype Linked to Spatial Gait Characteristics: Predictors of Cognitive Dual Task Gait Change. PLoS One 2016;11:e0156732; https://doi.org/10.1371/journal.pone.0156732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tripathi S, Verghese J, Blumen HM. Gray matter volume covariance networks associated with dual-task cost during walking-while-talking. Hum Brain Mapp 2019;40:2229–40; https://doi.org/10.1002/hbm.24520.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord 2008; https://doi.org/10.1002/mds.21720.

  45. Leisman G, Moustafa A, Shafir T. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function. Front Public Heal 2016;4:1; https://doi.org/10.3389/fpubh.2016.00094.

    Google Scholar 

  46. Allali G, Montembeault M, Brambati SM, et al. Brain Structure Covariance Associated With Gait Control in Aging. J Gerontol A Biol Sci Med Sci 2019;74:705–13; https://doi.org/10.1093/gerona/gly123.

    Article  PubMed  Google Scholar 

  47. Blumen HM, Holtzer R, Brown LL, Gazes Y, Verghese J. Behavioral and neural correlates of imagined walking and walking-while-talking in the elderly. Hum Brain Mapp 2014;35:4090–104; https://doi.org/10.1002/hbm.22461.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None

Funding

Funding: This work was funded by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health: #P20GM109025. The sponsors had no role in the design and conduct of the study; in the collection, analysis, and interpretation of data; in the preparation of the manuscript; or in the review or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason K. Longhurst.

Ethics declarations

Conflict of Interest: The authors have no conflict of interest to report.

Ethical standards: The study protocol was approved by the Institutional Review Board of Cleveland Clinic (No. 15-987). Informed consent was obtained from all participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longhurst, J.K., Cummings, J.L., John, S.E. et al. Dual Task Performance Is Associated with Amyloidosis in Cognitively Healthy Adults. J Prev Alzheimers Dis 9, 297–305 (2022). https://doi.org/10.14283/jpad.2022.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2022.1

Key words

Navigation