Skip to main content

Advertisement

Log in

Modelling the brain: Elementary components to explain ensemble functions

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

The brain is organized on multiple levels. The lowest meaningful one pertains to the molecular realm, followed by subcellular structures like the synapses, by cells like the neurons, and by microcircuits, mesocircuits and large-scale circuit assemblies. This stratified structure has so far hampered the interpretation of brain functions in terms of elementary electrochemical events occurring in the membranes of neurons and synapses. Each organization level is governed by emerging rules that do not simply account for the summation of events at the lower levels but require the understanding of highly non-linear interactions occurring in complex feed-forward and feed-back loops. Moreover, various forms of plasticity can persistently modify the neural circuits and their connections depending on the interactions of the organism with the environment. The brain appears thus to operate as a complex adaptive dynamical system and interpreting its function requires understanding the time-dependent evolution of multiple local activities and their rewiring during behaviour. While experimental evidence is instrumental to any further consideration on how the brain might operate, interpreting its multiscale organization in mechanistic terms requires the development of appropriate models. In this work we will illustrate how low-level representations of neuronal activity, intermediate level large-field networks and high-level connectomics can be used to explain how ensemble brain functions might emerge from elementary neuronal components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yufik Y. M. and Friston K., Front. Syst. Neurosci., 10 (2016) 98.

    Article  Google Scholar 

  2. Markram H., Nat. Rev. Neurosci., 7 (2006) 153.

    Article  Google Scholar 

  3. Markram H., Sci. Am. Mag., 306 (2012) 50.

    Article  Google Scholar 

  4. Markram H., Funct. Neurol., 28 (2013) 145.

    Google Scholar 

  5. Amunts K., Ebell C, Muller J., Telefont M., Knoll A. and Lippert T., Neuron, 92 (2016) 574.

    Article  Google Scholar 

  6. Tononi G., Boly M., Massimini M. and Koch C., Nat. Rev. Neurosci., 17 (2016) 450.

    Article  Google Scholar 

  7. D’Angelo E. and Peres A. (Editors), Fisiologia (Edi-Ermes, Milano) 2011.

    Google Scholar 

  8. Eccles J. C. (Editor), The neurophysiological basis of mind: the principles of neurophysiology (Oxford University Press, London) 1953.

    Google Scholar 

  9. Sperry R. W., Am. Sci., 40 (1952) 291.

    Google Scholar 

  10. Churchland P. S. (Editor), Neurophilosophy: toward a unified science of the mind-brain (Bradford Book, MIT Press, Cambridge) 1989.

    Google Scholar 

  11. Churchland P. S. (Editor), Brain-wise: Studies in Neurophilosophy (Bradford Books, MIT Press, Cambridge) 2002.

    Google Scholar 

  12. Kandel E. R. (Editor), in In search of memory: the emergence of a new science of mind (W. W. Norton and Company, New York) 2007, p. 382.

    Google Scholar 

  13. Koch C. (Editor), The quest for consciousness: a neurobiological approach (Roberts and Company Publishers, Pittsburgh) 2004.

    Google Scholar 

  14. De Schutter E., Ekeberg O., Kotaleski J. H., Achard P. and Lansner A., Trends Neurosci., 28 (2005) 562.

    Article  Google Scholar 

  15. Bouteiller J. M., Allam S. L., Hu E. Y., Greget R., Ambert N., Keller A. F., Pernot F., Bischoff S., Baudry M. and Berger T. W., Conf. Proc. IEEE Eng. Med. Biol. Soc., 2011 (2011) 445.

    Google Scholar 

  16. Grillner S., Kozlov A. and Kotaleski J. H., Curr. Opin. Neurobiol., 15 (2005) 614.

    Article  Google Scholar 

  17. Kotaleski J.H. and Blackwell K. T., Nat. Rev. Neurosci., 11 (2010) 239.

    Article  Google Scholar 

  18. Chen W. and De Schutter E., Front. Neuroinform., 11 (2017) 13.

    Article  Google Scholar 

  19. Koch C. and Segev I. (Editors), Methods in Neuronal Modeling, Second Edition (MIT Press, Cambridge) 1998.

    Google Scholar 

  20. De Schutter E. and Steuber V., in Computational neuroscience: realistic modeling for experimentalists, edited by De Schutter E. (CRC Press, Boca Raton) 2000, pp. 233–257.

  21. D’Angelo E., Antonietti A., Casali S., Casellato C, Garrido J. A., Luque N. R., Mapelli L., Masoli S., Pedrocchi A., Prestori F. and Rizza M. F., Front. Cell. Neurosci., 10 (2016) 176.

    Article  Google Scholar 

  22. D’Angelo E. and Casali S., Front. Neural Circuits, 6 (2013) 116.

    Google Scholar 

  23. Deco G., Jirsa V. K., Robinson P. A., Breakspear M. and Friston K., PLoS Comput. Biol., 4 (2008) e1000092.

    Article  ADS  Google Scholar 

  24. Deco G., Jirsa V. K. and Friston K. J., in Principles of Brain Dynamics, edited by Rabinovich M. I., Friston K. J. and Varona P. (MIT Press, Cambridge) 2012, chapter 1.

  25. Rabinovich M. I., Friston K. J. and Varona P. (Editors), Principles of Brain Dynamics (MIT Press, Cambridge) 2012.

    Google Scholar 

  26. Forti L., Cesana E., Mapelli J. and D’Angelo E., J. Physiol., 574 (2006) 711.

    Article  Google Scholar 

  27. Gandolfi D., Pozzi P., Tognolina M., Chirico G., Mapelli J. and D’Angelo E., Front. Cell. Neurosci., 8 (2014) 92.

    Google Scholar 

  28. Palesi F., Tournier D. J., Calamante F., Muhlert N., Castellazzi G., Chard D., d’Angelo E. and Wheeler-Kingshott C. A. M., Brain Struct. Funct., 220 (2015) 3369.

    Article  Google Scholar 

  29. Castellazzi G., Palesi F., Casali S., Vitali P., Sinforiani E., Wheeler-Kingshott C. A. M. and D’Angelo E., Front. Neurosci., 8 (2014) 223.

    Article  Google Scholar 

  30. Arbib M., Érdi P. and Szentagothai J., Behav. Brain Sci., 23 (1997) 513.

    Article  Google Scholar 

  31. Ferrea E., Maccione A., Medrihan L., Nieus T., Ghezzi D., Baldelli P., Benfenati F. and Berdondini L., Front. Neural Circuits, 6 (2012) 80.

    Article  Google Scholar 

  32. Maccione A., Gandolfo M., Zordan S., Amin H., Di Marco S., Nieus T., Angotzi G. N. and Berdondini L., Brain Res. Bull., 119 (2015) 118.

    Article  Google Scholar 

  33. Rieke F., Warland D., de Ruytervan Steveninck R. and Bialek W. (Editors), Spikes: Exploring the Neural Code (Computational Neuroscience) (MIT Press, Cambridge) 1999.

    Google Scholar 

  34. Palmer T. N. and O’Shea M., Front. Comput. Neurosci., 9 (2015) 124.

    Article  Google Scholar 

  35. Hodges A. (Editor), Alan Turing: the enigma (Burnett Books, London) 1983, p. 111.

    MATH  Google Scholar 

  36. Lynch P. (Editor), The Emergence of Numerical Weather Prediction (Cambridge University Press, Cambridge) 2006, pp. 1–27.

    MATH  Google Scholar 

  37. D’Angelo E., Solinas S., Garrido J., Casellato C., Pedrocchi A., Mapelli J., Gandolfi D. and Prestori F., Funct. Neurol., 28 (2013) 153.

    Google Scholar 

  38. Markram H., Muller E., Ramaswamy S., Reimann M. W., Abdellah M., Sanchez C. A., Ailamaki A., Alonso-Nanclares L., Antille N., Arsever S., Kahou G. A., Berger T. K., Bilgili A., Buncic N., Chalimourda A., Chindemi G., Courcol J. D., Delalondre F., Delattre V., Druckmann S., Dumusc R., Dynes J., Eilemann S., Gal E., Gevaert M. E., Ghobril J. P., Gidon A., Graham J. W., Gupta A., Haenel V., Hay E., Heinis T., Hernando J. B., Hines M., Kanari L., Keller D., Kenyon J., Khazen G., Kim Y., King J. G., Kisvarday Z., Kumbhar P., Lasserre S., Le Bé J. V., Magalhães B. R., Merchán-Pérez A., Meystre J., Morrice B. R., Muller J., Muñoz-Céspedes A., Muralidhar S., Muthurasa K., Nachbaur D., Newton T. H., Nolte M., Ovcharenko A., Palacios J., Pastor L., Perin R., Ranjan R., Riachi I., Rodríguez J. R., Riquelme J. L., Rössert C, Sfyrakis K., Shi Y., Shillcock J. C, Silberberg G., Silva R., Tauheed F., Telefont M., Toledo-Rodriguez M., Tränkler T., Van Geit W., Díaz J. V., Walker R., Wang Y., Zaninetta S. M., DeFelipe J., Hill S. L., Segev I. and Schürmann F., Cell, 163 (2015) 456.

    Article  Google Scholar 

  39. Chung J. R., Sung C, Mayerich D., Kwon J., Miller D. E., Huffman T., Keyser J., Abbott L. C. and Choe Y., Front. Neuroinform., 5 (2011) 29.

    Article  Google Scholar 

  40. Stix G., in Scientific American Blog - February 25, 2013, Big Neuroscience: Billions and Billions (Maybe) to Unravel Mysteries of the Brain.

  41. Underwood E., Science, 339 (2013) 1022.

    Article  ADS  Google Scholar 

  42. Wadman M., in Nature News Blog - 02 Apr 2013, Obama launches multibillion-dollar brainmap project.

  43. Pozzorini C., Mensi S., Hagens O., Naud R., Koch C. and Gerstner W., PLoS Comput. Biol., 11 (2015) e1004275.

    Article  ADS  Google Scholar 

  44. Wang Z., Guo L. and Adjouadi M., Int. J. Neural Syst., 24 (2014) 1440004.

    Article  Google Scholar 

  45. Izhikevich E. M. and Edelman G. M., Proc. Natl. Acad. Sci. U.S.A., 105 (2008) 3593.

    Article  ADS  Google Scholar 

  46. Falotico E., Vannucci L., Ambrosano A., Albanese U., Ulbrich S., Vasquez Tieck J. C, Hinkel G., Kaiser J., Peric I., Denninger O., Cauli N., Kirtay M., Roennau A., Klinker G., Von Arnim A., Guyot L., Peppicelli D., Martínez-Cañada P., Ros E., Maier P., Weber S., Huber M., Plecher D., Röhrbein F., Deser S., Roitberg A., vander Smagt P., Dillman R., Levi P., Laschi C, Knoll A. C. and Gewaltig M. O., Front. Neurorobot., 11 (2017) 2.

    Article  Google Scholar 

  47. Carrillo R. R., Ros E., Boucheny C. and Coenen O. J., Biosystems, 94 (2008) 18.

    Article  Google Scholar 

  48. Brüderle D., Petrovici M. A., Vogginger B., Ehrlich M., Pfeil T., Millner S., Grübl A., Wendt K., Müller E., Schwartz M. O., de Oliveira D. H., Jeltsch S., Fieres J., Schilling M., Müller P., Breitwieser O., Petkov V., Muller L., Davison A. P., Krishnamurthy P., Kremkow J., Lundqvist M., Muller E., Partzsch J., Scholze S., Zühl L., Mayr C, Destexhe A., Diesmann M., Potjans T. C., Lansner A., Schüffny R., Schemmel J. ¨. and Meier K., Biol. Cybern., 104 (2011) 263.

    Article  Google Scholar 

  49. Pfeil T., Grübl A., Jeltsch S., Müller E., Müller P., Petrovici M. A., Schmuker M., Brüderle D., Schemmel J. and Meier K., Front. Neurosci., 7 (2013) 11.

    Article  Google Scholar 

  50. Gerstner W., Sprekeler H. and Deco G., Science, 338 (2012) 60.

    Article  ADS  Google Scholar 

  51. Moran R., Pinotsis D. A. and Friston K., Front. Comput. Neurosci., 7 (2013) 57.

    Article  Google Scholar 

  52. Spiegler A. and Jirsa V. K., Neuroimage, 83 (2013) 704.

    Article  Google Scholar 

  53. Jirsa V. K. and Stefanescu R. A., Bull. Math. Biol., 73 (2011) 325.

    Article  MathSciNet  Google Scholar 

  54. Ogawa S., Tank D. W., Menon R., Ellermann J. M., Kim S. G., Merkle H. and Ugurbil K., Proc. Natl. Acad. Sci. U.S.A., 89 (1992) 5951.

    Article  ADS  Google Scholar 

  55. Pauli R., Bowring A., Reynolds R., Chen G., Nichols T. E. and Maumet C., Front. Neuroinform., 10 (2016) 24.

    Article  Google Scholar 

  56. Eklund A., Nichols T. E. and Knutsson H., Proc. Natl. Acad. Sci. U.S.A., 113 (2016) 7900.

    Article  Google Scholar 

  57. Woo C. W., Krishnan A. and Wager T. D., Neuroimage, 91 (2014) 412.

    Article  Google Scholar 

  58. Tournier J. D., Yeh C. H., Calamante F., Cho K. H., Connelly A. and Lin C. P., Neuroimage, 42 (2008) 617.

    Article  Google Scholar 

  59. Parker G. J., Stephan K. E., Barker G. J., Rowe J. B., MacManus D. G., Wheeler-Kingshott C. A., Ciccarelli O., Passingham R. E., Spinks R. L., Lemon R. N. and Turner R., Neuroimage, 15 (2002) 797.

    Article  Google Scholar 

  60. Thomas C., Ye F. Q., Irfanoglu M. O., Modi P., Saleem K. S., Leopold D. A. and Pierpaoli C., Proc. Natl. Acad. Sci. U.S.A., 111 (2014) 16574.

    Article  ADS  Google Scholar 

  61. Daducci A., Dal Palú A., Descoteaux M. and Thiran J. P., Front. Neurosci., 10 (2016) 247.

    Article  Google Scholar 

  62. Bassett D. S. and Bullmore E. T., Neuroscientist, (2016) pii:1073858416667720.

  63. Buzsaki G. (Editor), Rhythms of the Brain (Oxford University Press, Oxford) 2006.

    MATH  Google Scholar 

  64. Beckmann C. F., DeLuca M., Devlin J. T. and Smith S. M., Philos. Trans. R. Soc. Lond. B. Biol. Sci., 360 (2005) 1001.

    Article  Google Scholar 

  65. Menon V., in Principles of Brain Dynamics, edited by Rabinovich M. I., Friston K. J. and Varona P. (MIT Press, Cambridge) 2012.

  66. Sanz Leon P., Knock S. A., Woodman M. M., Domide L., Mersmann J., McIntosh A. R. and Jirsa V. K., Front. Neuroinform., 7 (2013) 10.

    Article  Google Scholar 

  67. Friston K. J., Mechelli A., Turner R. and Price C. J., Neuroimage, 4 (2000) 466.

    Article  Google Scholar 

  68. Brunel N. and Wang X. J., J. Comput. Neurosci., 1 (2001) 63; 37 (2014) 593(E).

    Article  Google Scholar 

  69. Friston K. J., Harrison L. and Penny W., Neuroimage, 19 (2003) 1273.

    Article  Google Scholar 

  70. Lee L., Friston K. and Horwitz B., Neuroimage, 30 (2006) 1243.

    Article  Google Scholar 

  71. Galliano E., Mazzarello P. and D’Angelo E., J. Physiol., 588 (2010) 3639.

    Article  Google Scholar 

  72. Marr D., J. Physiol., 202 (1969) 437.

    Article  Google Scholar 

  73. D’Angelo E., in Computational theories and their implementation in the brain — The legacy of David Marr, edited by Vaina L. M. and Passingham R. E. (Oxford University Press, Oxford) 2016, pp. 62–78.

  74. Honda T. and Ito M., in Computational theories and their implementation in the brain — The legacy of David Marr, edited by Vaina L. M. and Passingham R. E. (Oxford University Press, Oxford) 2016, pp. 29–61.

  75. Ito M. (Editor), Cerebellum and Neural Control (Raven Publishing, New York) 1984.

    Google Scholar 

  76. Davison A.P., Hines M. and Muller E., Front. Neurosci., 3 (2009) 374.

    Article  Google Scholar 

  77. D’Angelo E., Mapelli L., Casellato C., Garrido J. A., Luque N., Monaco J., Prestori F., Pedrocchi A. and Ros E., Cerebellum, 15 (2016) 139.

    Article  Google Scholar 

  78. D’Angelo E., De Filippi G., Rossi P. and Taglietti V., J. Neurophysiol., 80 (1998) 493.

    Article  Google Scholar 

  79. D’Angelo E., Nieus T., Maffei A., Armano S., Rossi P., Taglietti V., Fontana A. and Naldi G., J. Neurosci., 21 (2001) 759.

    Article  Google Scholar 

  80. Diwakar S., Magistretti J., Goldfarb M., Naldi G. and D’Angelo E., J. Neurophysiol., 101 (2009) 519.

    Article  Google Scholar 

  81. Magistretti J., Castelli L., Forti L. and D’Angelo E., J. Physiol., 573 (2006) 83.

    Article  Google Scholar 

  82. Goldfarb M., Schoorlemmer J., Williams A., Diwakar S., Wang Q., Huang X., Giza J., Tchetchik D., Kelley K., Vega A., Matthews G., Rossi P., Ornitz D. M. and D’Angelo E., Neuron, 55 (2007) 449.

    Article  Google Scholar 

  83. Dover K., Marra C., Solinas S., Popovic M., Subramaniyam S., Zecevic D., D’Angelo E. and Goldfarb M., Nat. Commun., 7 (2016) 12895.

    Article  ADS  Google Scholar 

  84. Hodgkin A. L. and Huxley A. F., J. Physiol., 117 (1952) 500.

    Article  Google Scholar 

  85. Solinas S., Forti L., Cesana E., Mapelli J., De Schutter E. and D’Angelo E., Front. Cell. Neurosci., 1 (2007) 4.

    Article  Google Scholar 

  86. Solinas S., Forti L., Cesana E., Mapelli J., De Schutter E. and D’Angelo E., Front. Cell. Neurosci., 1 (2007) 2.

    Article  Google Scholar 

  87. Vervaeke K., Lorincz A., Gleeson P., Farinella M., Nusser Z. and Silver R. A., Neuron, 67 (2010) 435.

    Article  Google Scholar 

  88. Vervaeke K., Lorincz A., Nusser Z. and Silver R. A., Science, 335 (2012) 1624.

    Article  ADS  Google Scholar 

  89. Szoboszlay M., Lőrincz A., Lanore F., Vervaeke K., Silver R. A. and Nusser Z., Neuron, 90 (2016) 1043.

    Article  Google Scholar 

  90. Nieus T., Sola E., Mapelli J., Saftenku E., Rossi P. and D’Angelo E., J. Neurophysiol., 95 (2006) 686.

    Article  Google Scholar 

  91. Nieus T. R., Mapelli L. and D’Angelo E., Front. Cell. Neurosci., 8 (2014) 246; 10 (2016) 30(E).

    Article  Google Scholar 

  92. Solinas S., Nieus T. and D’Angelo E., Front. Cell. Neurosci., 4 (2010) 12.

    Google Scholar 

  93. Diwakar S., Lombardo P., Solinas S., Naldi G. and D’Angelo E., PLoS One, 6 (2011) e21928.

    Article  ADS  Google Scholar 

  94. Parasuram H., Nair B., D’Angelo E., Hines M., Naldi G. and Diwakar S., Front. Comput. Neurosci., 10 (2016) 65.

    Article  Google Scholar 

  95. Masoli S., Solinas S. and D’Angelo E., Front. Cell. Neurosci., 9 (2015) 47.

    Article  Google Scholar 

  96. D’Angelo E. and De Zeeuw C. I., Trends Neurosci., 32 (2009) 30.

    Article  Google Scholar 

  97. D’Angelo E., Prog Brain Res., 210 (2014) 31.

    Article  Google Scholar 

  98. Sgritta M., Locatelli F., Soda T., Prestori F. and D’Angelo E., J. Neurosci., 37 (2017) 2809.

    Article  Google Scholar 

  99. Sola E., Prestori F., Rossi P., Taglietti V. and D’Angelo E., J. Physiol., 557 (2004) 843.

    Article  Google Scholar 

  100. Mapelli L., Gagliano G., Soda T., Laforenza U., Moccia F. and D’Angelo E., J. Neurosci., 37 (2017) 1340.

    Article  Google Scholar 

  101. Garrido J. A., Ros E. and D’Angelo E., Front. Comput. Neurosci., 7 (2013) 64.

    Article  Google Scholar 

  102. Garrido J. A., Luque N. R. and D’Angelo E., Front. Neural Circuits, 7 (2013) 159.

    Article  Google Scholar 

  103. Luque N. R., Garrido J. A., Carrillo R. R., D’Angelo E. and Ros E., Front. Comput. Neurosci., 8 (2014) 97.

    Article  Google Scholar 

  104. Casellato C., Antonietti A., Garrido J. A., Carrillo R. R., Luque N. R., Ros E., Pedrocchi A. and D’Angelo E., Plos One, 9 (2014) e112265.

    Article  ADS  Google Scholar 

  105. Casellato C., Antonietti A., Garrido J. A., Ferrigno G., D’Angelo E. and Pedrocchi A., Front. Comput. Neurosci., 9 (2015) 24.

    Article  Google Scholar 

  106. Antonietti A., Casellato C., D’Angelo E. and Pedrocchi A., IEEE Trans. Neural Netw. Learn. Syst., PP (2017) 99.

  107. Kawato M., Kuroda S. and Schweighofer N., Curr. Opin. Neurobiol., 21 (2011) 791.

    Article  Google Scholar 

  108. Lang E. J., Apps R., Bengtsson F., Cerminara N. L., De Zeeuw C. I., Ebner T. J., Heck D. H., Jaeger D., Jörntell H., Kawato M., Otis T. S., Ozyildirim O., Popa L. S., Reeves A. M., Schweighofer N., Sugihara I. and Xiao J., Cerebellum, 16 (2017) 230.

    Article  Google Scholar 

  109. Eyal G., Verhoog M. B., Testa-Silva G., Deitcher Y., Lodder J. C., Benavides-Piccione R., Morales J., DeFelipe J., de Kock C. P., Mansvelder H. D. and Segev I., Elife, 5 (2016) e16553.

    Article  Google Scholar 

  110. Cazemier J. L., Clascá F. and Tiesinga P. H., Front. Neuroanat., 10 (2016) 110.

    Article  Google Scholar 

  111. Bader A. A., Sherif G., Noah O., Christopher O., Georgios P., John O. and Kai Z., J. Theor. Biol., 422 (2017) 18.

    Article  Google Scholar 

  112. Alahmadi A. A., Pardini M., Samson R. S., D’Angelo E., Friston K., Toosy A. T. and Gandini Wheeler-Kingshott C. A., Hum. Brain Mapp., 36 (2015) 5079.

    Article  Google Scholar 

  113. Grillner S. and Robertson B., Curr. Biology, 26 (2016) R1088.

    Article  Google Scholar 

  114. Monaco J., Casellato C., Koch G. and D’Angelo E., Eur. J. Neurosci., 40 (2014) 3363.

    Article  Google Scholar 

  115. Shadmehr R., Smith M. A. and Krakauer J. W., Annu. Rev. Neurosci., 33 (2010) 89.

    Article  Google Scholar 

  116. Renzi C., Vecchi T., D’Angelo E., Silvanto J. and Cattaneo Z., Clin. Neurophysiol., 125 (2014) 2132.

    Article  Google Scholar 

  117. Cattaneo Z., Renzi C., Casali S., Silvanto J., Vecchi T., Papagno C. and D’Angelo E., Cortex, 58 (2014) 272.

    Article  Google Scholar 

  118. De Vidovich G. Z., Muffatti R., Monaco J., Caramia N., Broglia D., Caverzasi E., Barale F. and D’Angelo E., Front. Hum. Neurosci., 10 (2016) 582.

    Article  Google Scholar 

  119. Connor J. A. and Stevens C. F., J. Physiol., 213 (1971) 21.

    Article  Google Scholar 

  120. Connor J. A. and Stevens C. F., J. Physiol., 213 (1971) 31.

    Article  Google Scholar 

  121. Hines M. L. and Carnevale N. T., J. Neurosci. Methods, 169 (2008) 425.

    Article  Google Scholar 

  122. McDougal R. A., Morse T. M., Carnevale T., Marenco L., Wang R., Migliore M., Miller P. L., Shepherd G. M. and Hines M. L., J. Comput. Neurosci., 42 (2017) 1.

    Article  Google Scholar 

  123. Tsodyks M. V. and Markram H., Proc. Natl. Acad. Sci. U.S.A., 94 (1997) 719. Correction in: Proc. Natl. Acad. Sci. U.S.A., 94 (1997) 5495.

    Article  ADS  Google Scholar 

  124. Rubinov M. and Sporns O., Neuroimage, 52 (2010) 1059.

    Article  Google Scholar 

  125. Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B. and Joliot M., Neuroimage, 15 (2002) 273.

    Article  Google Scholar 

  126. Clayden J. D., Funct. Neurol., 28 (2013) 197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Angelo, E., Wheeler-Kingshott, C.G. Modelling the brain: Elementary components to explain ensemble functions. Riv. Nuovo Cim. 40, 297–333 (2017). https://doi.org/10.1393/ncr/i2017-10137-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2017-10137-5

Navigation