Skip to main content
Log in

Key Steps Influencing the Formation of Aluminosilicate Nanotubes by the Fluoride Route

  • Published:
Clays and Clay Minerals

Abstract

Imogolite is usually formed by means of a three-step process involving the use of large amounts of water with long crystallization times and low yields, preventing large-scale synthesis. These drawbacks can be overcome by synthesis in the presence of fluoride, an approach which has been demonstrated to be suitable for the synthesis of other phyllosilicates. In the present study, the nature of the Al and Si sources, the Al/Si molar ratio, the volume of H2O for the redispersion of the gel after desalination, the F/Si molar ratio, as well as the crystallization temperature and time have been varied to investigate their role in the crystallization of imogolite. The structural properties of the as-synthesized samples were characterized by X-ray diffraction, infrared spectroscopy, and 29Si, 27Al, and 19F magic angle spinning nuclear magnetic resonance spectroscopy. The results show that the imogolite nanotubes can be prepared with high yields (>55%) from AlCl3·6H2O and Na4SiO4 aqueous solutions with an Al/Si molar ratio of 2.5, addition of HF for a F/Si molar ratio of 0.1–0.2, and 4 days of crystallization at 98°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, W.C., Smith, D.M., Huling, J.C., Kim, Y.W., Bailey, J.K., and Brinker, C.J. (1993) Gas/vapor adsorption in imogolite: a microporous tubular aluminosilicate. Langmuir, 9, 1051–1057.

    Article  Google Scholar 

  • Adams, J.M. (1980) Gas chromatographic adsorption studies on synthetic imogolite. Journal of Chromatography A, 188, 97–106.

    Article  Google Scholar 

  • Arancibia-Miranda, N., Escudey, M., Molina, M., and García-González, M. (2013) Kinetic and surface study of single-walled aluminosilicate nanotubes and their precursors. Nanomaterials, 3, 126–140.

    Article  Google Scholar 

  • Barrett, S.M., Budd, P.M., and Price, C. (1991) The synthesis and characterization of imogolite. European Polymer Journal, 27, 609–612.

    Article  Google Scholar 

  • Barron, P.F., Wilson, M.A., Campbell, A.S., and Frost, R.L. (1982) Detection of imogolite in soils using solid state 29Si NMR. Nature, 299, 616–618.

    Article  Google Scholar 

  • Bishop, J.L., Rampe, E.B., Bish, D.L., Abidin, Z.L., Baker, L.L., Matsue, N., and Henmi, T. (2013) Spectral and hydration properties of allophane and imogolite. Clays and Clay Minerals, 61, 57–74.

    Article  Google Scholar 

  • Bleta, R., Jaubert, O., Gressier, M., and Menu, M.-J. (2011) Rheological behaviour and spectroscopic investigations of cerium-modified AlO(OH) colloidal suspensions. Journal of Colloid and Interface Science, 363, 557–565.

    Article  Google Scholar 

  • Chemmi, A., Brendlé, J., Marichal, C., and Lebeau, B. (2013) A novel fluoride route for the synthesis of aluminosilicate nanotubes. Nanomaterials, 3, 117–125.

    Article  Google Scholar 

  • Clark, C.J. (1984) Chemisorption of Cu(II) and Co(II) on allophane and imogolite. Clays and Clay Minerals, 32, 300–310.

    Article  Google Scholar 

  • Cradwick, P.C.G., Farmer, V.C., Russell, J.D., Masson, C.R., Wada, K., and Yoshinaga, N. (1972) Imogolite, a hydrated aluminium silicate of tubular structure. Nature Physical Science, 240, 187–189.

    Article  Google Scholar 

  • Denaix, L., Lamy, I., and Bottero, J.Y. (1999) Structure and affinity towards Cd2+, Cu2+, Pb2+ of synthetic colloidal amorphous aluminosilicates and their precursors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 158, 315–325.

    Article  Google Scholar 

  • Farmer, V.C. (1983) Synthetic imogolite: Properties, synthesis, and possible applications. Clay Minerals, 18, 459–472.

    Article  Google Scholar 

  • Farmer, V.C. and Fraser, A.R. (1979) Synthetic imogolite, a tubular hydroxyaluminium silicate. Pp. 547–553 in: Proceedings of the VI International Clay Conference, Oxford, UK (M.M. Mortland and V.C. Farmer, editors). Developments in Sedimentology, 27. Elsevier, Amsterdam.

    Google Scholar 

  • Farmer, V.C., Fraser, A.R., and Tait, J.M. (1977) Synthesis of imogolite: a tubular aluminium silicate polymer. Journal of the Chemical Society, Clinical Communications, 12, 462–463.

    Google Scholar 

  • Goodman, B.A., Russell, J.D., Montez, B., Oldfield, E., and Kirkpatrick, R.J. (1985) Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy. Physics and Chemistry of Minerals, 12, 342–346.

    Article  Google Scholar 

  • Guimarães, L., Pinto, Y.N., Lourenço, M.P., and Duarte, H.A. (2013) Imogolite-like nanotubes: structure, stability, electronic and mechanical properties of the phosphorous and arsenic derivatives. Physical Chemistry Chemical Physics, 15, 4303–4309.

    Article  Google Scholar 

  • Gustafsson, J.P. (2001) The surface chemistry of imogolite. Clays and Clay Minerals, 49, 73–80.

    Article  Google Scholar 

  • Hongo, T., Sugiyama, J., Yamazaki, A., and Yamasaki, A. (2013) Synthesis of imogolite from rice husk ash and evaluation of its acetaldehyde adsorption ability. Industrial & Engineering Chemistry Research, 52, 2111–2115.

    Article  Google Scholar 

  • Horvath, G. and Kawazoe, K. (1983) Method for the calculation of effective pore size distribution in molecular sieve carbon. Journal of Chemical Engineering of Japan, 16, 470–475.

    Article  Google Scholar 

  • Hu, J., Kamali Kannangara, G.S., Wilson, M.A., and Reddy, N. (2004) The fused silicate route to protoimogolite and imogolite. Journal of Non-Crystalline Solids, 347, 224–230.

    Article  Google Scholar 

  • Huve, L., Delmotte, L., Martin, P., Dred, R., Le Baron, J., and Saehr, D. (1992) 19F MAS-NMR study of structural fluorine in some natural and synthetic 2:1 layer silicates. Clays and Clay Minerals, 40, 186–191.

    Article  Google Scholar 

  • Imamura, S., Kokubu, T., Yamashita, T., Okamoto, Y., Kajiwara, K., and Kanai, H. (1996) Shape-selective copper-loaded imogolite catalyst. Journal of Catalysis, 160, 137–139.

    Article  Google Scholar 

  • Iyoda, F., Hayashi, S., Arakawa, S., John, B., Okamoto, M., Hayashi, H., and Yuan, G. (2012) Synthesis and adsorption characteristics of hollow spherical allophane nano-particles. Applied Clay Science, 56, 77–83.

    Article  Google Scholar 

  • Jiravanichanun, N., Yamamoto, K., Irie, A., Otsuka, H., and Takahara, A. (2009) Preparation of hybrid films of aluminosilicate nanofiber and conjugated polymer. Synthetic Metals, 159, 885–888.

    Article  Google Scholar 

  • Johnson, L.M. and Pinnavaia, T.J. (1990) Silylation of a tubular aluminosilicate polymer (imogolite) by reaction with hydrolyzed (γ-aminopropyl)triethoxysilane. Langmuir, 6, 307–311.

    Article  Google Scholar 

  • Kleber, M., Schwendenmann, L., Veldkamp, E., Rößbner, J., and Jahn, R. (2007) Halloysite versus gibbsite: Silicon cycling as a pedogenetic process in two lowland neotropical rain forest soils of La Selva, Costa Rica. Geoderma, 138, 1–11.

    Article  Google Scholar 

  • Koenderink, G.H., Kluijtmans, S.G.J., and Philipse, A.P. (1999) On the synthesis of colloidal imogolite fibers. Journal of Colloid and Interface Science, 216, 429–431.

    Article  Google Scholar 

  • Kuroda, Y., Fukumoto, K., and Kuroda, K. (2012) Uniform and high dispersion of gold nanoparticles on imogolite nanotubes and assembly into morphologically controlled materials. Applied Clay Science, 55, 10–17.

    Article  Google Scholar 

  • Levard, C., Rose, J., Masion, A., Doelsch, E., Borschneck, D., Olivi, L., Dominici, C., Grauby, O., Woicik, J.C., and Bottero, J.-Y. (2008) Synthesis of large quantities of single-walled aluminogermanate nanotube. Journal of the American Chemical Society, 130, 5862–5863.

    Article  Google Scholar 

  • Levard, C., Masion, A., Rose, J., Doelsch, E., Borschneck, D., Dominici, C., Ziarelli, F., and Bottero, J.-Y. (2009) Synthesis of imogolite fibers from decimolar concentration at low temperature and ambient pressure: A promising route for inexpensive nanotubes. Journal of the American Chemical Society, 131, 17080–17081.

    Article  Google Scholar 

  • Ma, W., Otsuka, H., and Takahara, A. (2011) Preparation and properties of PVC/PMMA-g-imogolite nanohybrid via surface-initiated radical polymerization. Polymer, 52, 5543–5550.

    Article  Google Scholar 

  • Massiot, D., Fayon, F., Capron, M., King, I., Calv, S., Le Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z., and Hoatson, G. (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 40, 70–76.

    Article  Google Scholar 

  • Montarges-Pelletier, E., Bogenez, S., Pelletier, M., Razafitianamaharavo, A., Ghanbaja, J., Lartiges, B., and Michot, L. (2005) Synthetic allophane-like particles: textural properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255, 1–10.

    Article  Google Scholar 

  • Mukherjee, S., Bartlow, V.M., and Nair, S. (2005) Phenomenology of the growth of single-walled aluminosilicate and aluminogermanate nanotubes of precise dimensions. Chemistry of Materials, 17, 4900–4909.

    Article  Google Scholar 

  • Mukherjee, S., Kim, K., and Nair, S. (2007) Short, highly ordered, single-walled mixed-oxide nanotubes assembled from amorphous nanoparticles. Journal of the American Chemical Society, 129, 6820–6826.

    Article  Google Scholar 

  • Ohashi, F., Tomura, S., Akaku, K., Hayashi, S., and Wada, S.- I. (2004) Characterization of synthetic imogolite nanotubes as gas storage. Journal of Materials Science, 39, 1799–1801.

    Article  Google Scholar 

  • Priya, G.K., Padmaja, P., Warrier, K.G.K., Damodaran, A.D., and Aruldhas, G. (1997) Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by Fourier transform infrared spectroscopy. Journal of Materials Science Letters, 16, 1584–1587.

    Article  Google Scholar 

  • Romero, A.A., Alba, M.D., Zhou, W., and Klinowski, J. (1997) Synthesis and characterization of the mesoporous silicate molecular sieve MCM-48. The Journal of Physical Chemistry B, 101, 5294–5300.

    Article  Google Scholar 

  • Suzuki, M. and Inukai, K. (2010) Synthesis and applications of imogolite nanotubes. Pp. 159–167 in: Inorganic and Metallic Nanotubular Materials (T. Kijima, editor). Topics in Applied Physics, 27, Springer, Berlin.

    Google Scholar 

  • Theng, B.K.G., Russell, M., Churchman, G.J., and Parfitt, R.L. (1982) Surface properties of allophane, halloysite, imogolite. Clays and Clay Minerals, 30, 143–149.

    Article  Google Scholar 

  • Thomas, B., Coradin, T., Laurent, G., Valentin, R., Mouloungui, Z., Babonneau, F., and Baccile, N. (2012) Biosurfactant-mediated one-step synthesis of hydrophobic functional imogolite nanotubes. RSC Advances, 2, 426–435.

    Article  Google Scholar 

  • Umegaki, T., Hosoya, T., Toyama, N., Xu, Q., and Kojima, Y. (2014) Fabrication of hollow silica—zirconia composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane. Journal of Alloys and Compounds, 608, 261–265.

    Article  Google Scholar 

  • Wada, S.-I. (1987) Imogolite synthesis at 25°C. Clays and Clay Minerals, 35, 379–384.

    Article  Google Scholar 

  • Wada, S.-I., Eto, A., and Wada, K. (1979) Synthetic allophane and imogolite. Journal of Soil Science, 30, 347–355.

    Article  Google Scholar 

  • Wilson, M.A., Lee, G.S., and Taylor, R.C. (2001) Tetrahedral rehydration during imogolite formation. Journal of Non-Crystalline Solids, 296, 172–181.

    Article  Google Scholar 

  • Wilson, M.A., Lee, G.S.H., and Taylor, R.C. (2002) Benzene displacement on imogolite. Clays and Clay Minerals, 50, 348–351.

    Article  Google Scholar 

  • Yamamoto, K., Otsuka, H., Takahara, A., and Wada, S.-I. (2002) Preparation of a novel (polymer/inorganic nanofiber) composite through surface modification of natural aluminosilicate nanofiber. The Journal of Adhesion, 78, 591–602.

    Article  Google Scholar 

  • Yoshinaga, N. and Aomine, S. (1962) Imogolite in some ando soils. Soil Science and Plant Nutrition, 8, 22–29.

    Article  Google Scholar 

  • Yucelen, G.I., Choudhury, R.P., Leisen, J., Nair, S., and Beckham, H.W. (2012) Defect structures in aluminosilicate single-walled nanotubes: A solid-state nuclear magnetic resonance investigation. The Journal of Physical Chemistry C, 116, 17149–17157.

    Article  Google Scholar 

  • Yucelen, G.I., Choudhury, R.P., Vyalikh, A., Scheler, U., Beckham, H.W., and Nair, S. (2011) Formation of single-walled aluminosilicate nanotubes from molecular precursors and curved nanoscale intermediates. Journal of American Chemical Society, 133, 5397–5412.

    Article  Google Scholar 

  • Zanzottera, C., Armandi, M., Esposito, S., Garrone, E., and Bonelli, B. (2012) CO2 adsorption on aluminosilicate single-walled nanotubes of imogolite type. The Journal of the Physical Chemistry C, 116, 20417–20425.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyne Brendle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chemmi, A., Brendle, J., Marichal, C. et al. Key Steps Influencing the Formation of Aluminosilicate Nanotubes by the Fluoride Route. Clays Clay Miner. 63, 132–143 (2015). https://doi.org/10.1346/CCMN.2015.0630205

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2015.0630205

Key Words

Navigation