Skip to main content
Log in

Efficacy of Near-Infrared Fluorescence Video-Assisted Thoracoscopic Surgery for Small Pulmonary Nodule Resection with Indocyanine Green Inhalation: A Randomized Clinical Trial

  • Thoracic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Small pulmonary nodules (<3 cm) can sometimes be unrecognizable and nonpalpable in video-assisted thoracoscopic surgery (VATS). Near-infrared fluorescence (NIF) VATS after indocyanine green (ICG) inhalation may effectively guide surgeons to locate the nodules.

Objective

This study aimed to investigate the safety, feasibility, and efficacy of ICG inhalation-based NIF imaging for guiding small pulmonary nodule resections.

Methods

Between February and May 2021, the first-stage, non-randomized trial enrolled 21 patients with different nodule depth, ICG inhalation doses, post-inhalation surgery times, and nodule types at a tertiary referral hospital. Between May 2021 and May 2022, the second-stage randomized trial enrolled 56 patients, who were randomly assigned to the fluorescence VATS (FLVATS) or the white-light VATS (WLVATS) group. The ratio of effective guidance and the time consumption for nodule localization were compared.

Results

The first-stage trial proved this new method is safe and feasible, and established a standardized protocol with optimized nodule depth (≤1 cm), ICG dose (0.20–0.25 mg/kg), and surgery window (50–90 min after ICG inhalation). In the second-stage trial, the FLVATS achieved 87.1% helpful nodule localization guidance, which was significantly higher than the WLVATS (59.1%, p < 0.05). The mean nodule locating time (standard deviation) was 1.8 [0.9] and 3.3 [2.3] min, respectively. Surgeons adopting FLVATS were significantly faster (p < 0.01), especially when locating small ground-glass opacities (1.3 [0.6] min vs. 7.0 [3.5] min, p < 0.05). Five of 31 nodules (16.1%) were only detectable by FLVATS, whereas both white light and palpation failed.

Conclusions

This new method is safe and feasible for small pulmonary nodule resection. It significantly improves nodule localization rates with less time consumption, and hence is highly worthy for clinical promotion.

Clinical Trial Registration Chinese Clinical Trial Registry Identifier: ChiCTR2100047326

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule: a review. JAMA. 2022;327(3):264–73. https://doi.org/10.1001/jama.2021.24287.

    Article  PubMed  Google Scholar 

  3. McDermott S, Fintelmann FJ, Bierhals AJ, et al. Image-guided preoperative localization of pulmonary nodules for video-assisted and robotically assisted surgery. Radiographics. 2019;39(5):1264–79. https://doi.org/10.1148/rg.2019180183.

    Article  PubMed  Google Scholar 

  4. Hallet J, Rousseau M, Gupta V, et al. Long-term functional outcomes among older adults undergoing video-assisted versus open surgery for lung cancer: a population-based cohort study. Ann Surg. Epub 21 Jan 2022. doi:https://doi.org/10.1097/SLA.0000000000005387

  5. Refai M, Andolfi M, Barbisan F, et al. Computed tomography-guided microcoil placement for localizing small pulmonary nodules before uniportal video-assisted thoracoscopic resection. Radiol Med. 2020;125(1):24–30. https://doi.org/10.1007/s11547-019-01077-x.

    Article  PubMed  Google Scholar 

  6. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology. 2017;284(1):228–43. https://doi.org/10.1148/radiol.2017161659.

    Article  PubMed  Google Scholar 

  7. Abbas A, Kadakia S, Ambur V, Muro K, Kaiser L. Intraoperative electromagnetic navigational bronchoscopic localization of small, deep, or subsolid pulmonary nodules. J Thorac Cardiovasc Surg. 2017;153(6):1581–90. https://doi.org/10.1016/j.jtcvs.2016.12.044.

    Article  PubMed  Google Scholar 

  8. Li X, Xu K, Cen R, et al. Preoperative computer tomography-guided indocyanine green injection is associated with successful localization of small pulmonary nodules. Transl Lung Cancer Res. 2021;10(5):2229–36. https://doi.org/10.21037/tlcr-21-425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rho J, Lee JW, Quan YH, et al. Fluorescent and iodized emulsion for preoperative localization of pulmonary nodules. Ann Surg. 2021;273(5):989–96. https://doi.org/10.1097/SLA.0000000000003300.

    Article  PubMed  Google Scholar 

  10. Thistlethwaite PA, Gower JR, Hernandez M, Zhang Y, Picel AC, Roberts AC. Needle localization of small pulmonary nodules: Lessons learned. J Thorac Cardiovasc Surg. 2018;155(5):2140–7. https://doi.org/10.1016/j.jtcvs.2018.01.007.

    Article  PubMed  Google Scholar 

  11. Martinez Criado Y, Perez Bertolez S, Cabello Laureano R, de Agustin Asensio JC. [CT-guided methylene blue labelling to locate a pulmonary nodule before thoracoscopic resection]. Cir Esp. Feb 2014;92(2):139-41. Instilacion de azul de metileno guiado por tomografia axial computarizada para localizar y resecar mediante toracoscopia un nodulo pulmonar. doi:https://doi.org/10.1016/j.ciresp.2012.02.018

  12. Doo KW, Yong HS, Kim HK, Kim S, Kang EY, Choi YH. Needlescopic resection of small and superficial pulmonary nodule after computed tomographic fluoroscopy-guided dual localization with radiotracer and hookwire. Ann Surg Oncol. 2015;22(1):331–7. https://doi.org/10.1245/s10434-014-3884-2.

    Article  PubMed  Google Scholar 

  13. Starnes SL, Wolujewicz M, Guitron J, Williams V, Scheler J, Ristagno R. Radiotracer localization of nonpalpable pulmonary nodules: a single-center experience. J Thorac Cardiovasc Surg. 2018;156(5):1986–92. https://doi.org/10.1016/j.jtcvs.2018.03.152.

    Article  PubMed  Google Scholar 

  14. Park CH, Hur J, Lee SM, et al. Lipiodol localization for ground-glass opacity minimal surgery: rationale and design of the LOGIS trial. Contemp Clin Trials. 2015;43:194–9. https://doi.org/10.1016/j.cct.2015.06.009.

    Article  PubMed  Google Scholar 

  15. Choi BG, Kim HH, Kim BS, Kim KT, Shinn KS, Moon SW. Pulmonary nodules: CT-guided contrast material localization for thoracoscopic resection. Radiology. 1998;208(2):399–401. https://doi.org/10.1148/radiology.208.2.9680566.

    Article  CAS  PubMed  Google Scholar 

  16. Powell TI, Jangra D, Clifton JC, et al. Peripheral lung nodules: fluoroscopically guided video-assisted thoracoscopic resection after computed tomography-guided localization using platinum microcoils. Ann Surg. 2004;240(3):481–8. https://doi.org/10.1097/01.sla.0000137132.01881.57.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bommart S, Bourdin A, Marin G, et al. Impact of preoperative marking coils on surgical and pathologic management of impalpable lung nodules. Ann Thorac Surg. 2014;97(2):414–8. https://doi.org/10.1016/j.athoracsur.2013.09.041.

    Article  PubMed  Google Scholar 

  18. Kang DY, Kim HK, Kim YK, Yong HS, Kang EY, Choi YH. Needlescopy-assisted resection of pulmonary nodule after dual localisation. Eur Respir J. 2011;37(1):13–7. https://doi.org/10.1183/09031936.00021410.

    Article  PubMed  Google Scholar 

  19. Xu X, Yao Y, Shen Y, Zhang P, Zhou J. Clinical analysis of percutaneous computed tomography-guided hook wire localization of 168 small pulmonary nodules. Ann Thorac Surg. 2015;100(5):1861–7. https://doi.org/10.1016/j.athoracsur.2015.05.029.

    Article  PubMed  Google Scholar 

  20. Ji H, Wang X, Wang P, et al. Lanthanide-based metal-organic frameworks solidified by gelatin-methacryloyl hydrogels for improving the accuracy of localization and excision of small pulmonary nodules. J Nanobiotechnology. 2022;20(1):60. https://doi.org/10.1186/s12951-022-01263-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quan YH, Oh CH, Jung D, et al. Evaluation of intraoperative near-infrared fluorescence visualization of the lung tumor margin with indocyanine green inhalation. JAMA Surg. 2020;155(8):732–40. https://doi.org/10.1001/jamasurg.2020.1314.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dimitrovska NT, Bao F, Yuan P, Hu S, Chu X, Li W. Learning curve for two-port video-assisted thoracoscopic surgery lung segmentectomy. Interact Cardiovasc Thorac Surg. 2022;34(3):402–7. https://doi.org/10.1093/icvts/ivab236.

    Article  PubMed  Google Scholar 

  23. Huang C, Sun Y, Wu Q, et al. Simultaneous bilateral pulmonary resection via single-utility port VATS for multiple pulmonary nodules: a single-center experience of 16 cases. Thorac Cancer. 2021;12(4):525–33. https://doi.org/10.1111/1759-7714.13791.

    Article  CAS  PubMed  Google Scholar 

  24. Bai C, Choi CM, Chu CM, et al. Evaluation of pulmonary nodules: clinical practice consensus guidelines for Asia. Chest. 2016;150(4):877–93. https://doi.org/10.1016/j.chest.2016.02.650.

    Article  PubMed  Google Scholar 

  25. He K, Hong X, Chi C, et al. Efficacy of near-infrared fluorescence-guided hepatectomy for the detection of colorectal liver metastases: a randomized controlled trial. J Am Coll Surg. 2022;234(2):130–7. https://doi.org/10.1097/XCS.0000000000000029.

    Article  PubMed  Google Scholar 

  26. Huang W, Wang K, Chen F, et al. Intraoperative fluorescence visualization in thoracoscopic surgery. Ann Thorac Surg. 2023;115(3):e79–81. https://doi.org/10.1016/j.athoracsur.2022.03.040.

    Article  PubMed  Google Scholar 

  27. Wang K, Du Y, Zhang Z, et al. Fluorescence image-guided tumour surgery. Nature Reviews Bioengineering. 2023;1(3):161–79. https://doi.org/10.1038/s44222-022-00017-1.

    Article  Google Scholar 

  28. He K, Hong X, Chi C, et al. A new method of near-infrared fluorescence image-guided hepatectomy for patients with hepatolithiasis: a randomized controlled trial. Surg Endosc. 2020;34(11):4975–82. https://doi.org/10.1007/s00464-019-07290-z.

    Article  PubMed  Google Scholar 

  29. Lauwerends LJ, van Driel P, Baatenburg de Jong RJ, et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncol. 2021;22(5):e186–95. https://doi.org/10.1016/S1470-2045(20)30600-8.

    Article  CAS  PubMed  Google Scholar 

  30. Mao Y, Chi C, Yang F, et al. The identification of sub-centimetre nodules by near-infrared fluorescence thoracoscopic systems in pulmonary resection surgeries. Eur J Cardiothorac Surg. 2017;52(6):1190–6. https://doi.org/10.1093/ejcts/ezx207.

    Article  PubMed  Google Scholar 

  31. Kasai Y, Tarumi S, Chang SS, et al. Clinical trial of new methods for identifying lung intersegmental borders using infrared thoracoscopy with indocyanine green: comparative analysis of 2- and 1-wavelength methods. Eur J Cardiothorac Surg. 2013;44(6):1103–7. https://doi.org/10.1093/ejcts/ezt168.

    Article  PubMed  Google Scholar 

  32. Lee JYK, Pierce JT, Thawani JP, et al. Near-infrared fluorescent image-guided surgery for intracranial meningioma. J Neurosurg. 2018;128(2):380–90. https://doi.org/10.3171/2016.10.JNS161636.

    Article  CAS  PubMed  Google Scholar 

  33. He K, Zhou J, Yang F, et al. Near-infrared intraoperative imaging of thoracic sympathetic nerves: from preclinical study to clinical trial. Theranostics. 2018;8(2):304–13. https://doi.org/10.7150/thno.22369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Predina JD, Newton AD, Keating J, et al. Intraoperative molecular imaging combined with positron emission tomography improves surgical management of peripheral malignant pulmonary nodules. Ann Surg. 2017;266(3):479–88. https://doi.org/10.1097/SLA.0000000000002382.

    Article  PubMed  Google Scholar 

  35. Predina JD, Keating J, Patel N, Nims S, Singhal S. Clinical implications of positive margins following non-small cell lung cancer surgery. J Surg Oncol. Mar2016;113(3):264–9. https://doi.org/10.1002/jso.24130.

    Article  PubMed  Google Scholar 

  36. Keating JJ, Kennedy GT, Singhal S. Identification of a subcentimeter pulmonary adenocarcinoma using intraoperative near-infrared imaging during video-assisted thoracoscopic surgery. J Thorac Cardiovasc Surg. Mar2015;149(3):e51–3. https://doi.org/10.1016/j.jtcvs.2014.10.081.

    Article  PubMed  Google Scholar 

  37. Mao Y, Wang K, He K, et al. Development and application of the near-infrared and white-light thoracoscope system for minimally invasive lung cancer surgery. J Biomed Opt. 2017;22(6):66002. https://doi.org/10.1117/1.JBO.22.6.066002.

    Article  PubMed  Google Scholar 

  38. Cerfolio RJ, Bryant AS. Is palpation of the nonresected pulmonary lobe(s) required for patients with non-small cell lung cancer? A prospective study. J Thorac Cardiovasc Surg. 2008;135(2):261–8. https://doi.org/10.1016/j.jtcvs.2007.08.062.

    Article  PubMed  Google Scholar 

  39. Hsu PK, Chuang LC, Wu YC. Electromagnetic navigation-guided preoperative localization of small malignant pulmonary tumors. Ann Thorac Surg. 2020;109(5):1566–73. https://doi.org/10.1016/j.athoracsur.2019.12.037.

    Article  PubMed  Google Scholar 

  40. Luo T, Chen Q, Zeng J, Cai L, Huang X. Peripheral pure ground-glass opacity: segmentectomy versus wedge resection. J Cardiothorac Surg. 2021;16(1):260. https://doi.org/10.1186/s13019-021-01610-y.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sepesi B, Walsh GL. Surgical therapy of ground-glass opacities. Semin Diagn Pathol. 2014;31(4):289–92. https://doi.org/10.1053/j.semdp.2014.06.006.

    Article  PubMed  Google Scholar 

  42. Kleedehn M, Kim DH, Lee FT, et al. Preoperative pulmonary nodule localization: a comparison of methylene blue and hookwire techniques. AJR Am J Roentgenol. 2016;207(6):1334–9. https://doi.org/10.2214/AJR.16.16272.

    Article  PubMed  Google Scholar 

  43. Zhang B, Peng M, Yu F, et al. A novel technique for preoperative localization of pulmonary nodules using a mixture of tissue adhesive and iohexol under computed tomography guidance: a 140 patient single-center study. Thorac Cancer. 2021;12(6):854–63. https://doi.org/10.1111/1759-7714.13826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rodrigues JCL, Pierre AF, Hanneman K, et al. CT-guided microcoil pulmonary nodule localization prior to video-assisted thoracoscopic surgery: diagnostic utility and recurrence-free survival. Radiology. 2019;291(1):214–22. https://doi.org/10.1148/radiol.2019181674.

    Article  PubMed  Google Scholar 

  45. Lee MO, Jin SY, Lee SK, Hwang S, Kim TG, Song YG. Video-assisted thoracoscopic surgical wedge resection using multiplanar computed tomography reconstruction-fluoroscopy after CT guided microcoil localization. Thorac Cancer. 2021;12(11):1721–5. https://doi.org/10.1111/1759-7714.13968.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Perera SK, Jacob S, Wilson BE, et al. Global demand for cancer surgery and an estimate of the optimal surgical and anaesthesia workforce between 2018 and 2040: a population-based modelling study. Lancet Oncol. 2021;22(2):182–9. https://doi.org/10.1016/S1470-2045(20)30675-6.

    Article  PubMed  Google Scholar 

  47. Kennedy GT, Azari FS, Bernstein E, et al. Targeted intraoperative molecular imaging for localizing nonpalpable tumors and quantifying resection margin distances. JAMA Surg. 2021;156(11):1043–50. https://doi.org/10.1001/jamasurg.2021.3757.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Technology of China under grant no. 2017YFA0205200; the National Natural Science Foundation of China under grant nos. 62027901, 81227901, 81930053, and 92159305; and the Excellent Member Project of Youth Innovation Promotion Association CAS (membership 2016124), and was supported by Hainan Province Clinical Medical Center.

Author information

Authors and Affiliations

Authors

Contributions

JT, FXC, and FC had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: KW, WYH, JT, FXC, FC. Acquisition, analysis, or interpretation data: KW, WYH, XSC, GL, NL, XMH, XQL, JLS, QYY, KSH, FC. Drafting of the manuscript: KW, WYH. Critical revision of the manuscript for important intellectual content: KW, WYH. Statistical analysis: KW, WYH. Obtained funding: KW, JT. Administrative, technical, or material support: KW, WYH, KSH, FXC, FC. Supervision: JT, FXC, FC.

Corresponding authors

Correspondence to Jie Tian PhD, Fengxia Chen MD or Feng Chen MD.

Ethics declarations

Disclosures

Kun Wang, Weiyuan Huang, Xianshan Chen, Gao Li, Na Li, Xiuming Huang, Xuqiang Liao, Jiali Song, Qianyu Yang, Kunshan He, Yu An, Xin Feng, Zeyu Zhang, Chongwei Chi, Jie Tian, Fengxia Chen, and Feng Chen declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1189 kb)

Supplementary file2 (MP4 76540 kb)

Supplementary file3 (MP4 46453 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Huang, W., Chen, X. et al. Efficacy of Near-Infrared Fluorescence Video-Assisted Thoracoscopic Surgery for Small Pulmonary Nodule Resection with Indocyanine Green Inhalation: A Randomized Clinical Trial. Ann Surg Oncol 30, 5912–5922 (2023). https://doi.org/10.1245/s10434-023-13753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-023-13753-4

Navigation