Skip to main content

Advertisement

Log in

Quality-by-Design-Based Development of Rivaroxaban-Loaded Liquisolid Compact Tablets with Improved Biopharmaceutical Attributes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Rivaroxaban (RXN) finds use in the management of pulmonary embolism and deep vein thrombosis. Its poor solubility (5–7 µg/mL) and P-gp-mediated efflux from intestinal lining limits the oral application of RXN. This work assessed the impact of liquisolid compact technique in augmenting the solubility and bioavailability of RXN. PEG 400, Avicel PH 200, and Aerosil 200 were used as non-volatile liquid, carrier, and coating material, respectively, to formulate RXN liquid–solid compacts (RXN LSCs). A 32-factor factorial design was used in the optimisation to assess the impacts of factors (load factor and carrier:coating ratio) on the responses (angle of repose and Q30 min). Pre-compression parameters of RXN LSCs suggested adequate flow and compressibility. Optimisation data suggested significant influence of factors on both the responses. Optimised RXN LSC-based tablets showed a significantly higher in vitro dissolution rate than RXN API and Xarelto® tablets due to improved solubility, reduced crystallinity, greater surface area, and enhanced wetting of RXN particles. XRD, DSC, and SEM data supported RXN’s amorphization. The cytotoxicity (MTT assay) and permeation studies indicated the nontoxicity of prepared RXN LSC tablets and the role of PEG 400 in inhibiting P-gp. Pharmacokinetic study of RXN LSC-based tablets in Albino Wistar rats exhibited 2.51- and 1.66-times higher AUC in comparison to RXN API and Xarelto® tablets respectively, demonstrating that developed formulation had a greater oral bioavailability. The RXN LSC tablets showed longer bleeding times and higher rates of platelet aggregation than RXN API. Thus, RXN LSC tablets can be considered a facile, scalable technology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

All materials used have been included in the manuscript. All the data has been disclosed in the manuscript.

References

  1. Shah PJ, Patel MP, Shah J, Nair AB, Kotta S, Vyas B. Amalgamation of solid dispersion and melt adsorption techniques for augmentation of oral bioavailability of novel anticoagulant rivaroxaban. Drug Deliv Transl Res. 2022;12(12):3029–46. https://doi.org/10.1007/s13346-022-01168-9.

    Article  CAS  PubMed  Google Scholar 

  2. Shah P, Chavda K, Vyas B, Patel S. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: role of P-gp inhibition. Drug Deliv Translat Res. 2021;11:1166–85. https://doi.org/10.1007/s13346-020-00839-9.

    Article  CAS  Google Scholar 

  3. Yadav M, Sarolia J, Vyas B, Lalan M, Mangrulkar S, Shah P. Amalgamation of solid dispersion and melt adsorption technique: improved in vitro and in vivo performance of ticagrelor tablets. AAPS PharmSciTech. 2021;22:1–21. https://doi.org/10.1208/s12249-021-02138-z.

    Article  CAS  Google Scholar 

  4. Pathak BK, Raghav M, Thakkar AR, Vyas BA, Shah PJ. Enhanced oral bioavailability of etodolac by the liquisolid compact technique: optimisation, in-vitro and in-vivo evaluation. Curr Drug Deliv. 2021;18(4):471–86. https://doi.org/10.2174/1567201817666201026111559.

    Article  CAS  PubMed  Google Scholar 

  5. Naureen F, Shah Y, Shah SI, Abbas M, Rehman IU, Muhammad S, Hamdullah H, Goh KW, Khuda F, Khan A, Chan SY, Mushtaq M, Ming LC. Formulation development of mirtazapine liquisolid compacts: optimization using central composite design. Molecules. 2022;27(13):4005. https://doi.org/10.3390/molecules27134005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lu M, Xing H, Jiang J, Chen X, Yang T, Wang D, Ding P. Liquisolid technique and its applications in pharmaceutics. Asian J Pharm Sci. 2017;12:115–23. https://doi.org/10.1016/j.ajps.2016.09.007.

    Article  PubMed  Google Scholar 

  7. Spireas S. Liquisolid systems and methods of preparing same. United States Patent US 6423339. 2002 Jul 23.

  8. Vraníková B, Gajdziok J. Liquisolid systems and aspects influencing their research and development. Acta Pharm. 2013;63(4):447–65. https://doi.org/10.2478/acph-2013-0034.

    Article  CAS  PubMed  Google Scholar 

  9. Syed IA, Pavani E. The liquisolid technique: based drug delivery system. Int J Pharm Sci Drug Res. 2012;4(2):88–96.

    CAS  Google Scholar 

  10. Prajapati ST, Bulchandani HH, Patel DM, Dumaniya SK, Patel CN. Formulation and evaluation of liquisolid compacts for olmesartan medoxomil. J Drug Deliv. 2013;870:579. https://doi.org/10.1155/2013/870579.

    Article  CAS  Google Scholar 

  11. Thakkar HP, Vasava D, Patel AA, Dhande RD. Formulation and evaluation of liquisolid compacts of itraconazole to enhance its oral bioavailability. Ther Deliv. 2020;11(2):83–96. https://doi.org/10.4155/tde-2019-0050.

    Article  CAS  PubMed  Google Scholar 

  12. Gong W, Wang Y, Sun L, Yang J, Shan L, Yang M, Gao C. Development of itraconazole liquisolid compact: effect of polyvinylpyrrolidone on the dissolution properties. Curr Drug Deliv. 2016;13(3):452–61. https://doi.org/10.2174/1567201813666160216144323.

    Article  CAS  PubMed  Google Scholar 

  13. Nokhodchi A, Javadzadeh Y, Siahi-Shadbad MR, Barzegar-Jalali M. The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin) from liquisolid compacts. J Pharm Pharm Sci. 2005;8(1):18–25.

    CAS  PubMed  Google Scholar 

  14. Tiong N, Elkordy AA. Effects of liquisolid formulations on dissolution of naproxen. Eur J Pharm Biopharm. 2009;73(3):373–84. https://doi.org/10.1016/j.ejpb.2009.08.002.

    Article  CAS  PubMed  Google Scholar 

  15. Hentzschel CM, Alnaief M, Smirnova I, Sakmann A, Leopold CS. Enhancement of griseofulvin release from liquisolid compacts. Eur J Pharm Biopharm. 2012;80(1):130–5. https://doi.org/10.1016/j.ejpb.2011.08.001.

    Article  CAS  PubMed  Google Scholar 

  16. Khaled KA, Asiri YA, El-Sayed YM. In vivo evaluation of hydrochlorothiazide liquisolid tablets in beagle dogs. Int J Pharm. 2001;222(1):1–6. https://doi.org/10.1016/S0378-5173(01)00633-0.

    Article  CAS  PubMed  Google Scholar 

  17. Khames A. Liquisolid technique: a promising alternative to conventional coating for improvement of drug photostability in solid dosage forms. Expert Opin Drug Deliv. 2013;10(10):1335–43. https://doi.org/10.1517/17425247.2013.798297.

    Article  CAS  PubMed  Google Scholar 

  18. Jhaveri M, Nair AB, Shah J, Jacob S, Patel V, Mehta T. Improvement of oral bioavailability of carvedilol by liquisolid compact: optimization and pharmacokinetic study. Drug Deliv Transl Res. 2020;10:975–85. https://doi.org/10.1007/s13346-020-00734-3.

    Article  CAS  PubMed  Google Scholar 

  19. Badawy MA, Kamel AO, Sammour OA. Use of biorelevant media for assessment of a poorly soluble weakly basic drug in the form of liquisolid compacts: in vitro and in vivo study. Drug Delivery. 2016;23(3):808–17. https://doi.org/10.3109/10717544.2014.917442.

    Article  CAS  Google Scholar 

  20. Bellin A, Berto P, Themistoclakis S, Chandak A, Giusti P, Cavalli G, Bakshi S, Tessarin M, Deambrosis P, Chinellato A. New oral anti-coagulants versus vitamin K antagonists in high thromboembolic risk patients. PLoS One. 2019;14(10):e0222762. https://doi.org/10.1371/journal.pone.0222762.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kalani C, Awudi E, Alexander T, Udeani G, Surani S. Evaluation of the efficacy of direct oral anticoagulants (DOACs) in comparison to warfarin in morbidly obese patients. Hosp Pract. 2019;47(4):181–5. https://doi.org/10.1080/21548331.2019.1674586.

    Article  Google Scholar 

  22. Minematsu K, Ikeda T, Ogawa S, Kitazono T, Nakagawara J, Miyamoto S, Murakawa Y, Takeichi M, Kidani Y, Okayama Y, Sunaya T. Real-world outcomes of rivaroxaban treatment in patients with both nonvalvular atrial fibrillation and a history of ischemic stroke/transient ischemic attack. Cerebrovasc Dis. 2019;48(1–2):53–60. https://doi.org/10.1159/000502883.

    Article  CAS  PubMed  Google Scholar 

  23. Vanassche T, Verhamme P. Rivaroxaban for the treatment of pulmonary embolism. Adv Ther. 2013;30:589–606. https://doi.org/10.1007/s12325-013-0041-4.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Mueck W, Stampfuss J, Kubitza D, Becka M. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet. 2014;53:1–6. https://doi.org/10.1007/s40262-013-0100-7.

    Article  CAS  PubMed  Google Scholar 

  25. Abouhussein DM, El Din Bahaa, Mahmoud D, Mohammad FE. Design of a liquid nano-sized drug delivery system with enhanced solubility of rivaroxaban for venous thromboembolism management in paediatric patients and emergency cases. J Liposome Res. 2019;29(4):399–412. https://doi.org/10.1080/08982104.2019.1576732.

    Article  CAS  PubMed  Google Scholar 

  26. Coleman CI, Baker WL, Meinecke AK, Eriksson D, Martinez BK, Bunz TJ, Alberts MJ. Effectiveness and safety of rivaroxaban vs. warfarin in patients with non-valvular atrial fibrillation and coronary or peripheral artery disease. Eur Heart J-Cardiovasc Pharmacother. 2020;6(3):159–66. https://doi.org/10.1093/ehjcvp/pvz047.

    Article  PubMed  Google Scholar 

  27. Xue X, Cao M, Ren L, Qian Y, Chen G. Preparation and optimization of rivaroxaban by self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability and no food effect. AAPS PharmSciTech. 2018;19:1847–59. https://doi.org/10.1208/s12249-018-0991-6.

    Article  CAS  PubMed  Google Scholar 

  28. Sherje AP, Jadhav M. β-Cyclodextrin-based inclusion complexes and nanocomposites of rivaroxaban for solubility enhancement. J Mater Sci - Mater Med. 2018;29:1–8. https://doi.org/10.1007/s10856-018-6194-6.

    Article  CAS  Google Scholar 

  29. Metre S, Mukesh S, Samal SK, Chand M, Sangamwar AT. Enhanced biopharmaceutical performance of rivaroxaban through polymeric amorphous solid dispersion. Mol Pharm. 2018;15(2):652–68. https://doi.org/10.1021/acs.molpharmaceut.7b01027.

    Article  CAS  PubMed  Google Scholar 

  30. Ganesh M. Design and optimization of rivaroxaban lipid solid dispersion for dissolution enhancement using statistical experimental design. Asian J Pharmaceut (AJP). 2016; 10(1):59–64. https://doi.org/10.22377/ajp.v10i1.529.

  31. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215859s000lbl.pdf. Accessed June 2021

  32. Stampfuss J, Kubitza D, Becka M, Mueck W. The effect of food on the absorption and pharmacokinetics of rivaroxaban. Int J Clin Pharmacol Ther. 2013;51(7):549–61. https://doi.org/10.5414/CP201812.

    Article  CAS  PubMed  Google Scholar 

  33. Cheng L, Wong H. Food effects on oral drug absorption: application of physiologically-based pharmacokinetic modeling as a predictive tool. Pharmaceutics. 2020;12(7):672. https://doi.org/10.3390/pharmaceutics12070672.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. DeWald TA, Becker RC. The pharmacology of novel oral anticoagulants. J Thromb Thrombolysis. 2014;37:217–33. https://doi.org/10.1007/s11239-013-0967-z.

    Article  CAS  PubMed  Google Scholar 

  35. Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–80. https://doi.org/10.1124/jpet.111.180240.

    Article  CAS  PubMed  Google Scholar 

  36. Kapourani A, Eleftheriadou K, Kontogiannopoulos KN, Barmpalexis P. Evaluation of rivaroxaban amorphous solid dispersions physical stability via molecular mobility studies and molecular simulations. Eur J Pharm Sci. 2021;157:105642. https://doi.org/10.1016/j.ejps.2020.105642.

    Article  CAS  PubMed  Google Scholar 

  37. Hriňová E, Skořepová E, Čerňa I, Královičová J, Kozlík P, Křížek T, Roušarová J, Ryšánek P, Šíma M, Slanař O, Šoóš M. Explaining dissolution properties of rivaroxaban cocrystals. Int J Pharm. 2022;622:121854. https://doi.org/10.1016/j.ijpharm.2022.121854.

    Article  CAS  PubMed  Google Scholar 

  38. Meng Y, Tan F, Yao J, Cui Y, Feng Y, Li Z, Wang Y, Yang Y, Gong W, Yang M, Kong X. Preparation, characterization, and pharmacokinetics of rivaroxaban cocrystals with enhanced in vitro and in vivo properties in beagle dogs. Int J Pharm: X. 2022;4:100119. https://doi.org/10.1016/j.ijpx.2022.100119.

    Article  CAS  PubMed  Google Scholar 

  39. Reddy MS, Sowmya S, Haq SM. Formulation and in-vitro characterization of self-micro emulsifying drug delivery systems of rivaroxaban. Int J Pharm Sci Res 2017; 8:3436-45. https://doi.org/10.13040/IJPSR.0975-8232.8(8).3436-4.

  40. Anwer MK, Mohammad M, Iqbal M, Ansari MN, Ezzeldin E, Fatima F, Alshahrani SM, Aldawsari MF, Alalaiwe A, Alzahrani AA, Aldayel AM. Sustained release and enhanced oral bioavailability of rivaroxaban by PLGA nanoparticles with no food effect. J Thromb Thrombolysis. 2020;49:404–12. https://doi.org/10.1007/s11239-019-02022-5.

    Article  CAS  PubMed  Google Scholar 

  41. Rao DM, Reddy BV. Amorphous coprecipitates of rivaroxaban. WO Application WO2014016842A1 2012. https://patents.google.com/patent/WO2014016842A1/en.

  42. Baka E, Comer JE, Takács-Novák K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J Pharm Biomed Anal. 2008;46(2):335–41. https://doi.org/10.1016/j.jpba.2007.10.030.

    Article  CAS  PubMed  Google Scholar 

  43. Jaydip B, Dhaval M, Soniwala MM, Chavda J. Formulation and optimization of liquisolid compact for enhancing dissolution properties of efavirenz by using DoE approach. Saudi Pharm J. 2020;28(6):737–45. https://doi.org/10.1016/j.jsps.2020.04.016.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Jacob S, Shirwaikar A, Nair A. Preparation and evaluation of fast-disintegrating effervescent tablets of glibenclamide. Drug Dev Ind Pharm. 2009;35(3):321–8. https://doi.org/10.1080/03639040802337021.

    Article  CAS  PubMed  Google Scholar 

  45. Shah RB, Tawakkul MA, Khan MA. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech. 2008;9:250–8. https://doi.org/10.1208/s12249-008-9046-8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. USP<616> Bulk density and tapped density. USP30 NF 25 (2007).

  47. Hausner HH. Friction conditions in a mass of metal powder. Int J Powder Metall. 1967;3:7–13.

    Google Scholar 

  48. Carr RL Jr. Evaluating flow properties of solids. Chem Eng. 1965;18:163–8.

    Google Scholar 

  49. Aulton ME, Taylor MGK. Aulton’s Pharmaceutics : the Design and Manufacture of Medicines. 5th rev. ed. Aulton ME, Taylor MGK, editors. Edinburgh: Elsevier; 2017. pp. 517–63.

  50. Shah P, Sarolia J, Vyas B, Wagh P, Ankur K, Kumar MA. PLGA nanoparticles for nose to brain delivery of Clonazepam: formulation, optimization by 32 Factorial design, in vitro and in vivo evaluation. Curr Drug Deliv. 2021;18(6):805–24. https://doi.org/10.2174/1567201817666200708115627.

    Article  CAS  PubMed  Google Scholar 

  51. Borderwala K, Swain G, Mange N, Gandhi J, Lalan M, Shah P. Formulation and evaluation of solid lipid nanoparticles of Ezetimibe in combination with Simvastatin. Nanosci Nanotechnol-Asia. 2020;10(4):404–18. https://doi.org/10.2174/2210681209666190218143736.

    Article  CAS  Google Scholar 

  52. Dhoranwala KA, Shah P, Shah S. Formulation optimization of rosuvastatin calcium-loaded solid lipid nanoparticles by 32 full-factorial design. Nano World J. 2015;1(4):112–21. https://doi.org/10.17756/nwj.2015-015.

  53. Govedarica B, Injac R, Dreu R, Srcic S. Formulation and evaluation of immediate release tablets with different types of paracetamol powders prepared by direct compression. Afr J Pharm Pharmacol. 2011;5(1):31–41. https://doi.org/10.5897/AJPP10.274.

    Article  CAS  Google Scholar 

  54. Nair AB, Al-Dhubiab BE, Shah J, Vimal P, Attimarad M, Harsha S. Development and evaluation of palonosetron loaded mucoadhesive buccal films. J Drug Deliv Sci Technol. 2018;47:351–8. https://doi.org/10.1016/j.jddst.2018.08.014.

    Article  CAS  Google Scholar 

  55. Shah H, Nair AB, Shah J, Bharadia P, Al-Dhubiab BE. Proniosomal gel for transdermal delivery of lornoxicam: optimization using factorial design and in vivo evaluation in rats. DARU J Pharmac Sci. 2019;27:59–70. https://doi.org/10.1007/s40199-019-00242-x.

    Article  CAS  Google Scholar 

  56. Pilli R, Nagabhushanam MV, Kadali SK. Etodolac dissolution improvement by preparation of solid dispersions with cyclodextrin complexes. Int J Pharm Sci Res. 2014;5(11): 4774–91. https://doi.org/10.13040/IJPSR.0975-8232.5(11).4774-91.

  57. Lee HJ, Kim JY, Park SH, Rhee YS, Park CW, Park ES. Controlled-release oral dosage forms containing nimodipine solid dispersion and hydrophilic carriers. J Drug Deliv Sci Technol. 2017;37:28–37. https://doi.org/10.1016/j.jddst.2016.11.001.

    Article  CAS  Google Scholar 

  58. Shah P, Jogani V, Mishra P, Mishra AK, Bagchi T, Misra A. In vitro assessment of acyclovir permeation across cell monolayers in the presence of absorption enhancers. Drug Dev Ind Pharm. 2008;34(3):279–88. https://doi.org/10.1080/03639040701655952.

    Article  CAS  PubMed  Google Scholar 

  59. Shah P, Jogani V, Mishra P, Mishra AK, Bagchi T, Misra A. Modulation of ganciclovir intestinal absorption in presence of absorption enhancers. J Pharm Sci. 2007;96(10):2710–22. https://doi.org/10.1002/jps.20888.

    Article  CAS  PubMed  Google Scholar 

  60. Jena G, Patra CN, Dixit PK. Cytotoxicity and pharmacokinetic studies of PLGA based capecitabine loaded nanoparticles. Indian J Pharm Educ Res. 2020;54(2):349–56. https://doi.org/10.5530/ijper.54.2.40.

    Article  CAS  Google Scholar 

  61. Samal J, Kandpal M, Vivekanandan P. HBeAg-induced miR-106b promotes cell growth by targeting the retinoblastoma gene. Sci Rep. 2017;7(1):14371. https://doi.org/10.1038/s41598-017-14652-x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Derogis PBM, Sanches LR, de Aranda VF, Colombini MP, Mangueira CLP, Katz M, et al. Determination of rivaroxaban in patient’s plasma samples by anti-Xa chromogenic test associated to high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). PLoS ONE. 2017;12(2):e0171272. https://doi.org/10.1371/journal.pone.0171272.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Shukla AH, Shah PJ, Dedhiya PP, Vyas BA, Shah SA. Development and validation of a HPTLC method for rivaroxaban in human plasma for a pharmacokinetic study. Indian J Pharm Sci. 2020;82(2):315–20. https://doi.org/10.36468/pharmaceutical-sciences.652.

  64. Zhang WL, Lou D, Zhang DT, Zhang Y, Huang HJ. Determination of rivaroxaban, apixaban and edoxaban in rat plasma by UPLC–MS/MS method. J Thrombosis Thrombol. 2016;42:205–11 https://doi.org/10.1007/s11239-016-1367-y.

  65. Wang YY, Tang ZY, Dong M, Liu XY, Peng SQ. Inhibition of platelet aggregation by polyaspartoyl L-arginine and its mechanism. Acta Pharmacol Sin. 2004;25:469–73.

    PubMed  Google Scholar 

  66. Nair A, Morsy MA, Jacob S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev Res. 2018;79(8):373–82. https://doi.org/10.1002/ddr.21461.

    Article  CAS  PubMed  Google Scholar 

  67. da Silva LC, Garcia T, Mori M, Sandri G, Bonferoni MC, Finotelli PV, Cinelli LP, Caramella C, Cabral LM. Preparation and characterization of polysaccharide-based nanoparticles with anticoagulant activity. Int J Nanomed. 2012;2975–86. https://doi.org/10.2147/IJN.S31632.

  68. Mekhfi H, El HM, Legssyer A. Platelet antiaggregant property of some Moroccan medicinal plants. J Ethnopharmacol. 2004;94:317–22. https://doi.org/10.1016/j.jep.2004.06.005.

    Article  PubMed  Google Scholar 

  69. Brown W. Crystal Structure of Octacalcium Phosphate. Nature. 1962;196:1048–50.

    Article  CAS  Google Scholar 

  70. Spireas S, Sadu S. Enhancement of prednisolone dissolution properties using liquisolid compacts. Int J Pharm. 1998;166(2):177–88. https://doi.org/10.1016/S0378-5173(98)00046-5.

    Article  CAS  Google Scholar 

  71. Indian pharmacopoeia; Government of India; Ministry of Health and Family Welfare; Indian Pharmacopoeia Commission, Ghaziabad, India; 2022. pp. 361.

  72. Petrovick PR, Jacob M, Gaudy D, Bassani VL, Guterres SS. Influence of adjuvants on the in vitro dissolution of hydrochlorothiazide from hard gelatin capsules. Int J Pharm. 1991;76(1–2):49–53. https://doi.org/10.1016/0378-5173(91)90342-L.

    Article  CAS  Google Scholar 

  73. Patel NK, Upadhyay AH, Bergum JS, Reier GE. An evaluation of microcrystalline cellulose and lactose excipients using an instrumented single station tablet press. Int J Pharm. 1994;110(3):203–10. https://doi.org/10.1016/0378-5173(94)90242-9.

    Article  CAS  Google Scholar 

  74. Hubatsch I, Ragnarsson EGE, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007;2(9):2111–9. https://doi.org/10.1038/nprot.2007.303.

    Article  CAS  PubMed  Google Scholar 

  75. Guan Y, Huang J, Zuo L, Xu J, Si L, Qiu J, et al. Effect of pluronic P123 and F127 block copolymer on P-glycoprotein transport and CYP3A metabolism. Arch Pharmacal Res. 2011;34(10):1719–28. https://doi.org/10.1007/s12272-011-1016-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Maliba Pharmacy College, Uka Tarsadia University, for providing the infrastructural facilities for carrying out this research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, Pranav Shah, Heta Desai; writing—original draft preparation, Heta Desai, Manisha Lalan; writing—review and editing, Heta Desai, Manisha Lalan, Madhur Kulkarni, and Pranav Shah; supervision, Pranav Shah.

Corresponding author

Correspondence to Pranav Shah.

Ethics declarations

Ethics Approval and Consent to Participate

All institutional and national guidelines for the care and use of laboratory animals were followed.

Consent for Publication

All authors have read and provided the consent for the publication of the research manuscript.

Competing Interests

The authors declare no competing interests.

Author’s Information

Pranav Shah-Professor & Head, Department of Pharmaceutics & Pharmaceutical Technology, Maliba Pharmacy College, Bardoli, Gujarat, India.

Heta Desai-Student, M. Pharm (Pharmaceutics), Maliba Pharmacy College, Bardoli, Gujarat, India.

Bhavin Vyas- Associate Professor & Head, Department of Pharmacology, Maliba Pharmacy College, Bardoli, Gujarat, India.

Manisha Lalan- Professor & Head, Department of Pharmaceutics & Pharmaceutical Technology, Sat Kaival College of Pharmacy, Sarsa, Gujarat, India.

Madhur Kulkarni- Professor & Head, Department of Pharmaceutics & Pharmaceutical Technology, SCES’s Indira College of Pharmacy, Pune, India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12249_2023_2635_MOESM1_ESM.jpg

Supplementary file1 Typical Chromatogram of RXN solution with caffeine (internal standard) spiked in plasma. (JPG 25 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, P., Desai, H., Vyas, B. et al. Quality-by-Design-Based Development of Rivaroxaban-Loaded Liquisolid Compact Tablets with Improved Biopharmaceutical Attributes. AAPS PharmSciTech 24, 176 (2023). https://doi.org/10.1208/s12249-023-02635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02635-3

Keywords

Navigation