Skip to main content

Advertisement

Log in

Amalgamation of solid dispersion and melt adsorption techniques for augmentation of oral bioavailability of novel anticoagulant rivaroxaban

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The objective of the present study was to evaluate the potential of solid dispersion adsorbate (SDA) to improve the solubility and bioavailability of rivaroxaban (RXN). SDA of RXN was developed by fusion method using PEG 4000 as carrier and Neusilin as adsorbent. A 32 full factorial design was utilized to formulate various SDAs. The selected independent variables were the amount of carrier (X1) and amount of adsorbent (X2). The responses measured were the time required for 85% drug release (Y1) and saturated solubility (Y2). MTT assay was employed for cytotoxicity studies on Caco-2 cells. In vivo pharmacokinetics and pharmacodynamic evaluations were carried out to assess the prepared SDA. Pre-compression evaluation of SDA suggests the prepared batches (B1–B9) possess adequate flow properties and could be used for compression of tablets. Differential scanning calorimetry and X-ray diffraction data signified the conversion of the crystalline form of drug to amorphous form, a key parameter accountable for improvement in drug dissolution. Optimization data suggests that the amount of carrier and amount of adsorbent significantly (P < 0.05) influence both dependent variables. Post-compression data signifies that the compressibility behavior of prepared tablets was within the official standard limits. A significant increase (P < 0.0001) in the in vitro dissolution characteristics of RXN was noticed in optimized SDA (> 85% in 10 min) as compared to the pure drug, marketed product, and directly compressible tablet. Cytotoxicity studies confirmed the nontoxicity of prepared RXN SDA tablets. RXN SDA tablets exhibited 2.79- and 1.85-fold higher AUC in comparison to RXN suspension and Xarelto tablets respectively indicating improved oral bioavailability. Higher bleeding time and percentage of platelet aggregation noticed with RXN SDA tablets in comparison to RXN suspension further substantiate the efficacy of the prepared formulation. In summary, the results showed the potential of RXN SDA tablets to enhance the bioavailability of RXN and hence can be an alternate approach of solid dosage form for its development for commercial application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data related to the manuscript has been included. The materials used in the experiments have been included in the “Materials and methods” section.

References

  1. Mueck W, Stampfuss J, Kubitza D, Becka M. Clinical Pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet. 2014;53(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  2. Abouhussein DMN, Bahaa El Din Mahmoud D, Mohammad FE. Design of a liquid nano-sized drug delivery system with enhanced solubility of rivaroxaban for venous thromboembolism management in paediatric patients and emergency cases. J Liposome Res. 2019;29(4):399–412.

  3. Xue X, Cao M, Ren L, Qian Y, Chen G. Preparation and optimization of rivaroxaban by self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability and no food effect. AAPS PharmSciTech. 2018;19(4):1847–59.

    Article  CAS  PubMed  Google Scholar 

  4. Anwer MK, Mohammad M, Iqbal M, Ansari MN, Ezzeldin E, Fatima F, et al. Sustained release and enhanced oral bioavailability of rivaroxaban by PLGA nanoparticles with no food effect. J Thromb Thrombolysis. 2020;49(3):404–12.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics. 2018;10(3). https://doi.org/10.3390/pharmaceutics10030074.

  6. Sree Harsha N, Hiremath JG, Sarudkar S, Attimarad M, Al-Dhubiab B, Nair AB, et al. Spray dried amorphous form of simvastatin: preparation and evaluation of the buccal tablet. Indian Journal of Pharmaceutical Education and Research. 2020;54:46–54.

    Article  Google Scholar 

  7. Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomaterials research. 2020;24(1):1–16.

    Article  CAS  Google Scholar 

  8. Jacob S, Nair AB. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev Res. 2018;79(5):201–17.

    Article  CAS  PubMed  Google Scholar 

  9. Sherje AP, Jadhav M. β-Cyclodextrin-based inclusion complexes and nanocomposites of rivaroxaban for solubility enhancement. J Mater Sci - Mater Med. 2018;29(12):186. https://doi.org/10.1007/s10856-018-6194-6.

    Article  CAS  PubMed  Google Scholar 

  10. Chen N, Di P, Ning S, Jiang W, Jing Q, Ren G, et al. Modified rivaroxaban microparticles for solid state properties improvement based on drug-protein/polymer supramolecular interactions. Powder Technol. 2019;344:819–29.

    Article  CAS  Google Scholar 

  11. Nepal PR, Han HK, Choi HK. Enhancement of solubility and dissolution of coenzyme Q10 using solid dispersion formulation. Int J Pharm. 2010;383(1–2):147–53.

    Article  CAS  PubMed  Google Scholar 

  12. Craig DQ. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231(2):131–44.

    Article  CAS  PubMed  Google Scholar 

  13. Kapourani A, Eleftheriadou K, Kontogiannopoulos KN, Barmpalexis P. Evaluation of rivaroxaban amorphous solid dispersions physical stability via molecular mobility studies and molecular simulations. Eur J Pharm Sci. 2021;157: 105642. https://doi.org/10.1016/j.ejps.2020.105642.

    Article  CAS  PubMed  Google Scholar 

  14. Metre S, Mukesh S, Samal SK, Chand M, Sangamwar AT. Enhanced biopharmaceutical performance of rivaroxaban through polymeric amorphous solid dispersion. Mol Pharm. 2018;15(2):652–68.

    Article  CAS  PubMed  Google Scholar 

  15. Ganesh M, Shekar BC, Madhusudan Y . Design and optimization of rivaroxaban lipid solid dispersion for dissolution enhancement using statistical experimental design. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm. 2016;10(1)59–64.

  16. Alshehri S, Imam SS, Hussain A, Altamimi MA, Alruwaili NK, Alotaibi F, Alanazi A, Shakeel F. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents. Drug Delivery. 2020;27(1):1625–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahajan A, Surti N, Koladiya P. Solid dispersion adsorbate technique for improved dissolution and flow properties of lurasidone hydrochloride: characterization using 3(2) factorial design. Drug Dev Ind Pharm. 2018;44(3):463–71.

    Article  CAS  PubMed  Google Scholar 

  18. Kaushik D, Singh N, Arora A. Enhancement of dissolution profile of gliclazide by solid dispersion adsorbates. Lat Am J Pharm. 2011;30:2057–60.

    CAS  Google Scholar 

  19. Gupta MK, Goldman D, Bogner RH, Tseng YC. Enhanced drug dissolution and bulk properties of solid dispersions granulated with a surface adsorbent. Pharm Dev Technol. 2001;6(4):563–72.

    Article  CAS  PubMed  Google Scholar 

  20. Hentzschel CM, Alnaief M, Smirnova I, Sakmann A, Leopold CS. Tableting properties of silica aerogel and other silicates. Drug Dev Ind Pharm. 2012;38(4):462–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Zhao Q, Hu Y, Sun L, Bai L, Jiang T, Wang S. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica. Int J Nanomed. 2013;8:4015–31.

    Article  Google Scholar 

  22. Tawfeek HM, Roberts M, El Hamd MA, Abdellatif AAH, Younis MA. Glibenclamide mini-tablets with an enhanced pharmacokinetic and pharmacodynamic performance. AAPS PharmSciTech. 2018;19(7):2948–60.

    Article  CAS  PubMed  Google Scholar 

  23. Nair AB, Chakraborty B, Murthy SN. Effect of polyethylene glycols on the trans-ungual delivery of terbinafine. Curr Drug Deliv. 2010;7(5):407–14.

    Article  CAS  PubMed  Google Scholar 

  24. Shah J, Vasanti S, Anroop B, Vyas H. Enhancement of dissolution rate of valdecoxib by solid dispersions technique with PVP K 30 & PEG 4000: preparation and in vitro evaluation. J Incl Phenom Macrocycl Chem. 2009;63(1):69–75.

    Article  CAS  Google Scholar 

  25. Altamimi MA, Elzayat EM, Qamar W, Alshehri SM, Sherif AY, Haq N, Shakeel F. Evaluation of the bioavailability of hydrocortisone when prepared as solid dispersion. Saudi pharmaceutical journal. 2019;27(5):629–36.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Farmoudeh A, Rezaeiroshan A, Abbaspour M, Nokhodchi A, Ebrahimnejad P. Solid dispersion pellets: an efficient pharmaceutical approach to enrich the solubility and dissolution rate of deferasirox. Biomed Res Int. 2020;2020:8583540. https://doi.org/10.1155/2020/8583540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Raval MK, Patel JM, Parikh RK, Sheth NR. Dissolution enhancement of chlorzoxazone using cogrinding technique. International journal of pharmaceutical investigation. 2015;5(4):247–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jhaveri M, Nair AB, Shah J, Jacob S, Patel V, Mehta T. Improvement of oral bioavailability of carvedilol by liquisolid compact: optimization and pharmacokinetic study. Drug Deliv Transl Res. 2020;10(4):975–85.

    Article  CAS  PubMed  Google Scholar 

  29. Kwon J, Giri BR, Song ES, Bae J, Lee J, Kim DW. Spray-dried amorphous solid dispersions of atorvastatin calcium for improved supersaturation and oral bioavailability. Pharmaceutics. 2019;11(9):461. https://doi.org/10.3390/pharmaceutics11090461.

    Article  CAS  PubMed Central  Google Scholar 

  30. Nair A, Gupta R, Vasanti S. In vitro controlled release of alfuzosin hydrochloride using HPMC-based matrix tablets and its comparison with marketed product. Pharm Dev Technol. 2007;12(6):621–5.

    Article  CAS  PubMed  Google Scholar 

  31. Harsha SN, Aldhubiab BE, Nair AB, Alhaider IA, Attimarad M, Venugopala KN, Srinivasan S, Gangadhar N, Asif AH. Nanoparticle formulation by Büchi B-90 nano spray dryer for oral mucoadhesion. Drug Des Dev Ther. 2015;9:273–82.

    Article  CAS  Google Scholar 

  32. Sakure K, Kumari L, Badwaik H. Development and evaluation of solid dispersion based rapid disintegrating tablets of poorly water-soluble anti-diabetic drug. J Drug Delivery Sci Technol. 2020;60:101942. https://doi.org/10.1016/j.jddst.2020.101942.

    Article  CAS  Google Scholar 

  33. Çelebier M, Kaynak M, Altinoz S, Selma S. UV spectrophotometric method for determination of the dissolution profile of rivaroxaban. Dissolut Technol. 2014;21:56–9.

    Article  Google Scholar 

  34. Abdallah MA, Al-Ghobashy MA, Lotfy HM. Investigation of the profile and kinetics of degradation of rivaroxaban using HPLC, TLC-densitometry and LC/MS/MS: application to pre-formulation studies. Bulletin of Faculty of Pharmacy, Cairo University. 2015;53(1):53–61.

    Article  Google Scholar 

  35. Shah P, Sarolia J, Vyas B, Wagh P, Kaul A, Mishra AK. PLGA nanoparticles for nose to brain delivery of clonazepam: formulation, optimization by 32 factorial design, in-vitro and in-vivo evaluation. Curr Drug Deliv. 2021;18(6):805–24.

    Article  CAS  PubMed  Google Scholar 

  36. Borderwala K, Swain G, Mange N, Gandhi J, Lalan M, Singhvi G, Shah P. Optimization of solid lipid nanoparticles of ezetimibe in combination with simvastatin using quality by design (QbD). Nanoscience & Nanotechnology-Asia. 2020;10(4):404–18.

    Article  CAS  Google Scholar 

  37. Naik B, Gandhi J, Shah P, Naik H, Sarolia J. Asenapine maleate loaded solid lipid nanoparticles for oral delivery. International Research Journal of Pharmacy. 2017;8:45–53.

    Article  CAS  Google Scholar 

  38. Nair AB, Al-Dhubiab BE, Shah J, Jacob S, Saraiya V, Attimarad M, SreeHarsha N, Akrawi SH, Shehata TM. Mucoadhesive buccal film of almotriptan improved therapeutic delivery in rabbit model. Saudi pharmaceutical journal. 2020;28(2):201–9.

    Article  CAS  PubMed  Google Scholar 

  39. Nair AB, Sreeharsha N, Al-Dhubiab BE, Hiremath JG, Shinu P, Attimarad M, Venugopala KN, Mutahar M. HPMC- and PLGA-based nanoparticles for the mucoadhesive delivery of sitagliptin: optimization and in vivo evaluation in rats. Materials. 2019;12:4239. https://doi.org/10.3390/ma12244239.

    Article  CAS  PubMed Central  Google Scholar 

  40. Nair AB, Al-Dhubiab BE, Shah J, Attimarad M, Harsha S. Poly (lactic acid-co-glycolic acid) Nanospheres improved the oral delivery of candesartan cilexetil. Indian J Pharm Educ Res. 2017;51:571–9.

    Article  CAS  Google Scholar 

  41. Akrawi SH, Gorain B, Nair AB, Choudhury H, Pandey M, Shah JN, Venugopala KN. Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing. Pharmaceutics. 2020;12(9):893. https://doi.org/10.3390/pharmaceutics12090893.

    Article  CAS  PubMed Central  Google Scholar 

  42. Chong J, Chen H, Dai D, Wang S, Zhou Q, Liu J, et al. Effects of ticagrelor on the pharmacokinetics of rivaroxaban in rats. Pharm Biol. 2020;58(1):630–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chaudhary S, Nair AB, Shah J, Gorain B, Jacob S, Shah H, Patel V. Enhanced solubility and bioavailability of dolutegravir by solid dispersion method: in vitro and in vivo evaluation—a potential approach for HIV therapy. AAPS PharmSciTech. 2021;22(3):127. https://doi.org/10.1208/s12249-021-01995-y.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang WL, Lou D, Zhang DT, Zhang Y, Huang HJ. Determination of rivaroxaban, apixaban and edoxaban in rat plasma by UPLC-MS/MS method. J Thromb Thrombolysis. 2016;42(2):205–11.

    Article  CAS  PubMed  Google Scholar 

  45. Nair A, Morsy MA, Jacob S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev Res. 2018;79(8):373–82.

    Article  CAS  PubMed  Google Scholar 

  46. Wang YY, Tang ZY, Dong M, Liu XY, Peng SQ. Inhibition of platelet aggregation by polyaspartoyl L-arginine and its mechanism. Acta Pharmacol Sin. 2004;25(4):469–73.

    PubMed  Google Scholar 

  47. Mekhfi H, El Haouari M, Legssyer A, Bnouham M, Aziz M, Atmani F, et al. Platelet anti-aggregant property of some Moroccan medicinal plants. J Ethnopharmacol. 2004;94(2–3):317–22.

    Article  PubMed  Google Scholar 

  48. Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962;194:927–9.

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Wang T, Ding W, Dong C, Wang X, Chen J, Li Y. Dissolution and oral bioavailability enhancement of praziquantel by solid dispersions. Drug Deliv Transl Res. 2018;8(3):580–90.

    Article  CAS  PubMed  Google Scholar 

  50. Vojinović T, Medarević D, Vranić E, Potpara Z, Krstić M, Djuriš J, Ibrić S. Development of ternary solid dispersions with hydrophilic polymer and surface adsorbent for improving dissolution rate of carbamazepine. Saudi pharmaceutical journal. 2018;26(5):725–32.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sruti J, Patra ChN, Swain SK, Beg S, Palatasingh HR, Dinda SC, BhanojiRao ME. Improvement in dissolution rate of cefuroxime axetil by using Poloxamer 188 and Neusilin US2. Indian J Pharm Sci. 2013;75(1):67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tafu NN, Jideani VA. Characterization of novel solid dispersions of Moringa oleifera leaf powder using thermo-analytical techniques. Processes. 2021;9:2230. https://doi.org/10.3390/pr9122230.

  53. Taokaew S, Ofuchi M, Kobayashi T. Chitin biomass-nifedipine amorphous solid dispersion for enhancement of hydrophobic drug dissolution in aqueous media. Sustain Chem Pharm. 2020;17:100284. https://doi.org/10.1016/j.scp.2020.100284.

  54. Lee HJ, Kim JY, Park SH, Rhee YS, Park CW, Park ES. Controlled-release oral dosage forms containing nimodipine solid dispersion and hydrophilic carriers. J Drug Deliv Sci Technol. 2017;37:28–37.

    Article  CAS  Google Scholar 

  55. Komínová P, Kulaviak L, Zámostný P. Stress-dependent particle interactions of magnesium aluminometasilicates as their performance factor in powder flow and compaction applications. Materials. 2021;14(4):900. https://doi.org/10.3390/ma14040900.

  56. Gupta MK, Goldman D, Bogner RH, Tseng YC. Enhanced drug dissolution and bulk properties of solid dispersions granulated with a surface adsorbent. Pharm Dev Technol. 2001;6:563–72.

    Article  CAS  PubMed  Google Scholar 

  57. Yadav M, Sarolia J, Vyas B, Lalan M, Mangrulkar S, Shah P. Amalgamation of solid dispersion and melt adsorption technique: improved in vitro and in vivo performance of ticagrelor tablets. AAPS PharmSciTech. 2021;22(8):257. https://doi.org/10.1208/s12249-021-02138-z.

    Article  CAS  PubMed  Google Scholar 

  58. Kapsi SG, Ayres JW. Processing factors in development of solid solution formulation of itraconazole for enhancement of drug dissolution and bioavailability. Int J Pharm. 2001;229:193–203.

    Article  CAS  PubMed  Google Scholar 

  59. Chutimaworapan S, Ritthidej GC, Yonemochi E, et al. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Dev Ind Pharm. 2000;26:1141–50.

    Article  CAS  PubMed  Google Scholar 

  60. Balata G, Mahdi M, Bakera RA. Improvement of solubility and dissolution properties of clotrimazole by solid dispersions and inclusion complexes. Indian J Pharm Sci. 2011;73(5):517–26.

    Article  PubMed  PubMed Central  Google Scholar 

  61. https://www.rxlist.com/xarelto-drug.htm#description. Accessed 9 Dec 2021.

  62. da Silva LC, Garcia T, Mori M, Sandri G, Bonferoni MC, Finotelli PV, Cinelli LP, Caramella C, Cabral LM. Preparation and characterization of polysaccharide-based nanoparticles with anticoagulant activity. Int J Nanomedicine. 2012;7:2975–86.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Patel M, Mundada V, Sawant K. Enhanced intestinal absorption of asenapine maleate by fabricating solid lipid nanoparticles using TPGS: elucidation of transport mechanism, permeability across Caco-2 cell line and in vivo pharmacokinetic studies. Artificial Cells, Nanomedicine, and Biotechnology. 2019;47(1):144–53.

    Article  CAS  PubMed  Google Scholar 

  64. Kim SJ, Lee HK, Na YG, Bang KH, Lee HJ, Wang M, et al. A novel composition of ticagrelor by solid dispersion technique for increasing solubility and intestinal permeability. Int J Pharm. 2019;555:11–8.

    Article  CAS  PubMed  Google Scholar 

  65. Perzborn E, Heitmeier S, Laux V. Effects of rivaroxaban on platelet activation and platelet-coagulation pathway interaction: in vitro and in vivo studies. J Cardiovasc Pharmacol Ther. 2015;20(6):554–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the management of Maliba Pharmacy College, Bardoli, Surat, India for the support.

Funding

The funding for the research work was provided by Maliba Pharmacy College.

Author information

Authors and Affiliations

Authors

Contributions

Pranav J. Shah: Conceptualization, data curation, formal analysis, investigation, methodology, writing—review and editing. Patel Milan Pankajkumar: Conceptualization, data curation, formal analysis, investigation, methodology, writing—original draft preparation. Jigar Shah: Formal analysis, investigation, methodology, writing—review and editing. Sabna Kotta: Formal analysis, investigation, methodology, writing—review and editing. Anroop B. Nair: Formal analysis, investigation, methodology, writing—review and editing. Bhavin Vyas: Pharmacokinetic and pharmacodynamic studies, writing—review and editing.

Corresponding author

Correspondence to Pranav J. Shah.

Ethics declarations

Ethics approval and consent to participate

All institutional and national guidelines for the care and use of laboratory animals were followed.

Consent for publication

All authors have read and provided consent for the publication of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 271 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, P.J., Patel, M.P., Shah, J. et al. Amalgamation of solid dispersion and melt adsorption techniques for augmentation of oral bioavailability of novel anticoagulant rivaroxaban. Drug Deliv. and Transl. Res. 12, 3029–3046 (2022). https://doi.org/10.1007/s13346-022-01168-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01168-9

Keywords

Navigation