Skip to main content

Advertisement

Log in

Proniosomal gel for transdermal delivery of lornoxicam: optimization using factorial design and in vivo evaluation in rats

  • Research Article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Objective

Clinical utility of lornoxicam in oral therapy is primarily restricted by the low solubility and gastric adverse effects. This study evaluated the prospective of optimized proniosomal gel to improve the clinical efficacy of lornoxicam and compare with oral therapy.

Methods

Proniosomes were formulated by coacervation phase separation technique using span 60, lecithin and cholesterol. A four-factor three-level Box-Behnken design was used to evaluate the effect of amount of four independent variables; span 60 (X1), cholesterol (X2), lecithin (X3) and lornoxicam (X4) on response variables; vesicle size (Y1), entrapment efficiency (Y2) and transdermal flux (Y3). The selected proniosomal gel (F19) was characterized, and evaluated for the transdermal efficacy by ex vivo and in vivo experiments.

Results

Optimization study signifies that amount of formulation components (span 60, cholesterol, lecithin and lornoxicam) influence the vesicle size, entrapment efficiency and/or transdermal flux. Optimized formulation F19 exhibited nano size with high entrapment efficiency, adequate zeta potential, greater transdermal flux and better stability (at refrigerated conditions). The entrapment of lornoxicam in the bilayers of proniosome vesicles was confirmed by differential scanning calorimeter. Release profile of F19 was distinct (p < 0.001) from gel prepared using hydroxypropyl methylcellulose (control) and displayed steady lornoxicam release by Fickian diffusion. Transdermal administration of F19 significantly inhibited the carrageenan induced hind-paw edema in rats as compared to oral lornoxicam group.

Conclusions

The data observed in this study demonstrated that the developed proniosomal gel (F19) improved the clinical efficacy of lornoxicam as compared to oral therapy.

Proniosomal gel for transdermal delivery of lornoxicam: optimization using factorial design and in vivo evaluation in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Christian H, Jan GJ. Lornoxicam: pharmacology and usefulness to treat acute postoperative and musculoskeletal pain a narrative review. Expert Opin Pharmacother. 2013;14(12):1679–94.

    Article  CAS  Google Scholar 

  2. Homdrum EM, Likar R, Nell G. Xefo® Rapid: a novel effective tool for pain treatment. Eur Surg. 2006;38:342–52.

    Article  Google Scholar 

  3. Shahzad Y, Khan Q, Hussain T, Shah SNH. Influence of cellulose derivative and ethylene glycol on optimization of lornoxicam transdermal formulation. Int J Biol Macromol. 2013;61:26–32.

    Article  CAS  PubMed  Google Scholar 

  4. Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009;41(2):199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marwah H, Garg T, Rath G, Goyal AK. Development of transferosomal gel for trans-dermal delivery of insulin using iodine complex. Drug Deliv. 2016;23(5):1636–44.

    Article  CAS  PubMed  Google Scholar 

  6. Anroop B, Ghosh B, Parcha V, Khanam J. Transdermal delivery of atenolol: effect of prodrugs and iontophoresis. Curr Drug Deliv. 2009;6(3):280–90.

    Article  CAS  PubMed  Google Scholar 

  7. Dasgupta S, Ghosh SK, Ray S, Kaurav SS, Mazumder B. In vitro & in vivo studies on lornoxicam loaded nanoemulsion gels for topical application. Curr Drug Deliv. 2014;11(1):132–8.

    Article  CAS  PubMed  Google Scholar 

  8. Deepak K, Preeti W, Pradeep V. Niosomal gel of lornoxicam for topical delivery: in vitro assessment and pharmacodynamic activity. AAPS PharmSciTech. 2013;14(3):1072–82.

    Article  CAS  Google Scholar 

  9. Li K, Gao S, Tian B, Shi Y, Lv Q, Han J. Formulation optimization and in-vitro and in-vivo evaluation of lornoxicam ethosomal gels with penetration enhancers. Curr Drug Deliv. 2018;15(3):424–35.

    Article  CAS  PubMed  Google Scholar 

  10. Nair AB, Chakraborty B, Murthy SN. Effect of polyethylene glycols on the trans-ungual delivery of terbinafine. Curr Drug Deliv. 2010;7(5):407–14.

    Article  CAS  PubMed  Google Scholar 

  11. Rehman K, Zulfakar MH. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev Ind Pharm. 2014;40(4):433–40.

    Article  CAS  PubMed  Google Scholar 

  12. Kamboj S, Nair A. Solid lipid nanoparticles: an effective lipid based technology for poorly water soluble drugs. Int J Pharm Sci Rev Res. 2010;5(2):78–90.

    CAS  Google Scholar 

  13. Khatoon M, Shah KU, Din FU, Shah SU, Rehman AU, Dilawar N, et al. Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Deliv. 2017;24(2):56–69.

    Article  CAS  PubMed  Google Scholar 

  14. Thakkar M. Opportunities and challenges for niosomes as drug delivery systems. Curr Drug Deliv. 2016;13(8):1275–89.

    Article  CAS  PubMed  Google Scholar 

  15. Ahmad MZ, Mohammed AA, Mokhtar Ibrahim M. Technology overview and drug delivery application of proniosome. Pharm Dev Technol. 2017;22(3):302–11.

    Article  CAS  PubMed  Google Scholar 

  16. Rahimpour Y, Kouhsoltani M, Hamishehkar H. Proniosomes in transdermal drug delivery. Curr Pharm Des. 2015;21(20):2883–91.

    Article  CAS  PubMed  Google Scholar 

  17. Madan JR, Ghuge NP, Dua K. Formulation and evaluation of proniosomes containing lornoxicam. Drug Deliv Transl Res. 2016;6(5):511–8.

    Article  CAS  PubMed  Google Scholar 

  18. Attimarad M, Rapid RP. HPLC method for quantitative determination of Lornoxicam in tablets. J Basic Clinical Pharm. 2010;1(2):115–8.

    CAS  Google Scholar 

  19. Alsarra IA. Evaluation of proniosomes as an alternative strategy to optimize piroxicam transdermal delivery. J Microencapsul. 2009;26:272–8.

    Article  CAS  PubMed  Google Scholar 

  20. Nair AB, Kaushik A, Attimarad M, Al-Dhubiab BE. Enhanced oral bioavailability of calcium using bovine serum albumin microspheres. Drug Deliv. 2012;19(6):277–85.

    Article  CAS  PubMed  Google Scholar 

  21. Nair AB, Jacob S, Al-Dhubiab BE, Alhumam RN. Influence of skin permeation enhancers on the transdermal delivery of palonosetron: an in vitro evaluation. J Appl Biomed. 2018;16(3):192–7.

    Article  Google Scholar 

  22. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  PubMed  Google Scholar 

  23. Nair A, Vyas H, Shah J, Kumar A. Effect of permeation enhancers on the iontophoretic transport of metoprolol tartrate and the drug retention in skin. Drug Deliv. 2011;18(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  24. Anroop B, Ghosh B, Parcha V, Kumar A, Khanam J. Synthesis and comparative skin permeability of atenolol and propranolol esters. J Drug Del Sci Tech. 2005;15(2):187–90.

    Article  CAS  Google Scholar 

  25. Ammar HO, Ghorabb M, El-Nahhasc SA, Higazya IM. Proniosomes as a carrier system for transdermal delivery of tenoxicam. Int J Pharm. 2011;405:142–52.

    Article  CAS  PubMed  Google Scholar 

  26. Ustündağ Okur N, Apaydın S, Karabay Yavaşoğlu NÜ, Yavaşoğlu A, Karasulu HY. Evaluation of skin permeation and anti-inflammatory and analgesic effects of new naproxen microemulsion formulations. Int J Pharm. 2011;416(1):136–44.

    PubMed  Google Scholar 

  27. Nair A, Morsy MA, Jacob S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev Res. 2018;79(8):373–82.

    Article  CAS  Google Scholar 

  28. Azeem A, Jain N, Iqbal Z, Ahmad FJ, Aqil M, Talegaonkar S. Feasibility of proniosomes-based transdermal delivery of frusemide: formulation optimization and pharmacotechnical evaluation. Pharm Dev Technol. 2008;13(2):155–63.

    Article  CAS  PubMed  Google Scholar 

  29. Alsarra IA, Bosela AA, Ahmed SM, Mahrous GM. Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur J Pharm Biopharm. 2005;59:485–90.

    Article  CAS  PubMed  Google Scholar 

  30. Gannu R, Palem CR, Yamsani SK, Yamsani VV, Yamsani MR. Enhanced bioavailability of buspirone from reservoir-based transdermal therapeutic system, optimization of formulation employing box Behnken statistical design. AAPS PharmSciTech. 2010;11:976–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chopra S, Patil GV, Motwani SK. Release modulating hydrophilic matrix systems of losartan potassium: optimization of formulation using statistical experimental design. Eur J Pharm Biopharm. 2007;66:73–82.

    Article  CAS  PubMed  Google Scholar 

  32. Hao Y, Zhao F, Li N, Yang Y, Li K. Studies on a high encapsulation of colchicine by a niosome system. Int J Pharm. 2002;244:73–80.

    Article  CAS  PubMed  Google Scholar 

  33. Balakrishnan P, Shanmugam S, Lee WS, Lee WM, Kim JO, Oh DH, et al. Formulation and in-vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm. 2009;377:1–8.

    Article  CAS  PubMed  Google Scholar 

  34. El-Laithy HM, Shoukry O, Mahran LG. Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies. Eur J Pharm Biopharm. 2011;77:43–55.

    Article  CAS  PubMed  Google Scholar 

  35. EL-Samaligy MS, Afifi NN, Mahmoud EA. Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation. Int J Pharm. 2006;308:140–8.

    Article  CAS  PubMed  Google Scholar 

  36. Aboelwafa AA, Doaa AE, Aliaa NE. Comparative study on the effects of some polyoxyethylene alkyl ether and sorbitan fatty acid ester surfactants on the performance of transdermal carvedilol proniosomal gel using experimental design. AAPS PharmSciTech. 2010;11:1591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fang JY, Yu SY, Wu PC, Huang YB, Tsai YH. In-vitro skin permeation of estradiol from various proniosomes formulation. Int J Pharm. 2001;215:91–9.

    Article  CAS  PubMed  Google Scholar 

  38. Jacob S, Anroop B, Al-Dhubiab BE. Preparation and evaluation of niosome gel containing acyclovir for enhanced dermal deposition. J Liposome Res. 2017;27(4):283–92.

    Article  CAS  PubMed  Google Scholar 

  39. El-Ridy MS, Yehia SA, Mohsen AM, El-Awdan SA, Darwish AB. Formulation of Niosomal gel for enhanced transdermal lornoxicam delivery: in-vitro and in-vivo evaluation. Curr Drug Deliv. 2018;15:122–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Arihant School of Pharmacy & BRI, Gandhinagar and Institute of Pharmacy, Nirma University, Ahmedabad for providing laboratory facilities. No financial support received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jigar Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, H., Nair, A.B., Shah, J. et al. Proniosomal gel for transdermal delivery of lornoxicam: optimization using factorial design and in vivo evaluation in rats. DARU J Pharm Sci 27, 59–70 (2019). https://doi.org/10.1007/s40199-019-00242-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-019-00242-x

Keywords

Navigation