Skip to main content

Advertisement

Log in

Magnetic Targeting of 5-Fluorouracil-Loaded Liposome-Nanogels for In Vivo Breast Cancer Therapy and the Cytotoxic Effects on Liver and Kidney

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In our previous paper, we demonstrated the ex vivo studies of non-toxic liposome-nanogel systems by which the long-term drug release could be provided from hybrid systems for the 5-fluorouracil (5-FU) drug molecule. The aim of this study was the in vivo magnetic targeting of 5-FU-loaded Fe3O4 nanoparticles including DPPC liposome-based PEGylated nanogels (5-FU loaded Fe3O4LPN) to breast cancer tissue and the investigation of the treatment and cytotoxic effects of that hybrid system to the liver and kidney in CD-1 mice using an external magnetic field. The effectiveness of the control, 5-FU group, Fe3O4LPN, and 5-FU-loaded Fe3O4LPN systems was evaluated using histopathology in terms of p53, ESR, PRG and C-erB-2, and qRT-PCR in terms of TYMS, ESR-1, RPG, and EGRF. Also, the cytotoxicity was analyzed by histopathological evaluation of kidney and liver tissues. Caspase-3 and caspase-9 evaluations were performed by qRT-PCR. The creatinine and ALT levels were also evaluated by comparing the blood samples of all groups. A total of 300-nm TEM-sized Fe3O4LNP hybrid system was successfully prepared. That system significantly decreased the TYMS and ESR1 levels after treatment process and increased the levels of p53 expression. The levels of caspase-3 mRNA did not change during the treatment, but the level of caspase-9 mRNA level was significantly decreased. The magnetically targeted liposome-based nanogel hybrid system is promising an effective therapy for the breast tumor with less liver and kidney damage. This Fe3O4LNP hybrid system could be useful for the similar small molecules.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020;21(9):3233. https://doi.org/10.3390/ijms21093233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuo MT. Redox regulation of multidrug resistance in cancer chemotherapy: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2009;11(1):99–133. https://doi.org/10.1089/ars.2008.2095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nooter K, Stoter G. Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol Res Pract. 1996;192(7):768–80. https://doi.org/10.1016/S0344-0338(96)80099-9.

    Article  CAS  PubMed  Google Scholar 

  4. Jones AAD, Mi GJ, Webster TJ. A status report on FDA approval of medical devices containing nanostructured materials. Trends Biotechnol. 2019;37(2):117–20. https://doi.org/10.1016/j.tibtech.2018.06.003.

    Article  CAS  PubMed  Google Scholar 

  5. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3): e10143. https://doi.org/10.1002/btm2.10143.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87. https://doi.org/10.1007/s11095-016-1958-5.

    Article  CAS  PubMed  Google Scholar 

  7. Mu W, Chu Q, Liu Y, et al. A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 2020;12(142). https://doi.org/10.1007/s40820-020-00482-6.

  8. Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine. 2018;13:3921–35. https://doi.org/10.2147/IJN.S165210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanna V, Sechi M. Therapeutic potential of targeted nanoparticles and perspective on nanotherapies. ACS Med Chem Lett. 2020;11(6):1069–73. https://doi.org/10.1021/acsmedchemlett.0c00075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li HF, Wu C, Xia M, et al. Targeted and controlled drug delivery using a temperature and ultra-violet responsive liposome with excellent breast cancer suppressing ability. RSC Adv. 2015;5:27630–9. https://doi.org/10.1039/C5RA01553G.

    Article  CAS  Google Scholar 

  11. Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46. https://doi.org/10.1016/j.jconrel.2010.08.027.

    Article  CAS  PubMed  Google Scholar 

  12. Le Renard PE, Jordan O, Faes A, et al. The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterial. 2010;31(4):691–705. https://doi.org/10.1016/j.biomaterials.2009.09.091.

    Article  CAS  Google Scholar 

  13. Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int. 2007;46(8):1222–44. https://doi.org/10.1002/anie.200602866.

    Article  CAS  Google Scholar 

  14. Arias JL, Gallardo V, Ruiz A, et al. Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-Fluorouracil delivery systems for active targeting. Eur J Pharm Biopharm. 2008;69(1):54–63. https://doi.org/10.1016/j.ejpb.2007.11.002.

    Article  CAS  PubMed  Google Scholar 

  15. Jafari S, Soleimani M, Salehi R. Nanotechnology-based combinational drug delivery systems for breast cancer treatment. Int J Poly Mater. 2019;68(14):859–69. https://doi.org/10.1080/00914037.2018.1517348.

    Article  CAS  Google Scholar 

  16. Ahmed KS, Hussein SA, Ali AH, et al. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target. 2019;27(7):742–61. https://doi.org/10.1080/1061186X.2018.1527337.

    Article  CAS  PubMed  Google Scholar 

  17. Scherphof G, Roerdink F, Hoekstra D, Zborowski J, Gregoriadis EW, Allison AC. Liposomes in biological systems. New York: Wiley; 1980. p. 179–209.

    Google Scholar 

  18. Karami N, Moghimipour E, Salimi A. Liposomes as a novel drug delivery system: fundamental and pharmaceutical application. Asian J Phar. 2018;12(1):S31–41. https://doi.org/10.22377/AJP.V12I01.2037.

    Article  CAS  Google Scholar 

  19. Daraee H, Etemadi A, Kouhi M, et al. Application of liposomes in medicine and drug delivery. Artificial Cells Nanom Biotech Int J. 2016;44(1):381–91. https://doi.org/10.3109/21691401.2014.953633.

    Article  CAS  Google Scholar 

  20. Beltron-Gracia E, Lopez-Camacho A, Higuera-Ciapara I, et al. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol. 2019;10(11). https://doi.org/10.1186/s12645-019-0055-y.

  21. Smith CE, Kong H. Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener. Langmuir. 2014;30(13):3697–704. https://doi.org/10.1021/la500412r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Anilkumar TS, Lu YJ, Chen HA, et al. Dual targeted magnetic photosensitive liposomes for photothermal/photodynamic tumor therapy. J Magn Magn Mater. 2019;473:241–52. https://doi.org/10.1016/j.jmmm.2018.10.020.

    Article  CAS  Google Scholar 

  23. Cern A, Nativ-Roht E, Goldblum A, et al. Effect of solubilizing agents on mupirocin loading into and release from PEGylated nanoliposomes. J Pharm Sci. 2014;103(7):2131–8. https://doi.org/10.1002/jps.24037.

    Article  CAS  PubMed  Google Scholar 

  24. Eloy JO, Petrilli R, Trevizan LNF, et al. Immunoliposomes: a review on functionalization strategies and targets for drug delivery. Colloid Surface B-Biointerfaces. 2017;159:454–67. https://doi.org/10.1016/j.colsurfb.2017.07.085.

    Article  CAS  Google Scholar 

  25. Khan AA, Allemailem KS, Almatroodi SA, et al. Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech. 2020;10(4):163. https://doi.org/10.1007/s13205-020-2144-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Daraee H, Etemadi A, Kouhi M, et al. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–91. https://doi.org/10.3109/21691401.2014.953633.

    Article  CAS  PubMed  Google Scholar 

  27. Kazakov S. Liposome-nanogel structures for future pharmaceutical applications. Curr Pharm Des. 2006;12(36):4713–28. https://doi.org/10.2174/1381612822666160125114733.

    Article  CAS  PubMed  Google Scholar 

  28. Grijalvo S, Mary J, Eritja R, et al. Biodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of convenience. Biomater Sci. 2016;4(4):555–74. https://doi.org/10.1039/C5BM00481K.

    Article  CAS  PubMed  Google Scholar 

  29. Torres-Martinez A, Cngulo-Pachon CA, Galindo F, et al. Liposome-enveloped molecular nanogels. Langmuir. 2019;35(41):13375–81. https://doi.org/10.1021/acs.langmuir.9b02282.

    Article  CAS  PubMed  Google Scholar 

  30. Allard-Vannier E, Cohen-Jonathan S, Gautier J, et al. PEGylated magnetic nanocarriers for doxorubicin delivery: a quantitative determination of stealthiness in vitro and in vivo. Eur J Pharm Biopharm. 2012;81(3):498–505. https://doi.org/10.1016/j.ejpb.2012.04.002.

    Article  CAS  PubMed  Google Scholar 

  31. Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330–8. https://doi.org/10.1038/nrc1074.

    Article  CAS  PubMed  Google Scholar 

  32. Zheng XF, Lian Q, Yang H, et al. Surface molecularly imprinted polymer of chitosan grafted poly(methyl methacrylate) for 5-fluorouracil and controlled release. Sci Rep. 2016;6:21409. https://doi.org/10.1038/srep21409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fournier E, Passirani C, Colin N, et al. Development of novel 5-FU-loaded poly(methylidene malonate 2.1.2)-based microspheres for the treatment of brain cancers. Eur J Pharm Biopharm. 2004;57(2):189–97. https://doi.org/10.1016/S0939-6411(03)00146-2.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang W, Feng M, Zheng G, et al. Chemoresistance to 5-fluorouracil induces epithelial-mesenchymal transition via up-regulation of Snail in MCF7 human breast cancer cell. Biochem Biophys Res Commun. 2012;417(2):679–85. https://doi.org/10.1016/j.bbrc.2011.11.142.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang N, Yin Y, Xu SJ, et al. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules. 2008;13(8):1551–69. https://doi.org/10.3390/molecules13081551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hernandez-Vargas H, Ballestar E, Carmona-Saez P, et al. Transcriptional profiling of MCF7 breast cancer cells in response to 5-Fluorouracil: relationship with cell cycle changes and apoptosis, and identification of novel targets of p53. Int J Cancer. 2006;119(5):1164–75. https://doi.org/10.1002/ijc.21938.

    Article  CAS  PubMed  Google Scholar 

  37. Martignoni M, Kanter R, Moscone A, et al. Lack of strain-related differences in drug metabolism and efflux transporter characteristics between CD-1 and athymic nude mice. Cancer Chemother Pharmacol. 2005;55(2):129–35. https://doi.org/10.1007/s00280-004-0898-7.

    Article  CAS  PubMed  Google Scholar 

  38. Wang W, Nag S, Zhang RW. Pharmacokinetics and pharmacodynamics in breast cancer animal models. Breast Cancer: Methods and Protocols. 2016;1406:271–87. https://doi.org/10.1007/978-1-4939-3444-7_23.

    Article  CAS  Google Scholar 

  39. Holliday DL, Speir V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13(4):215. https://doi.org/10.1186/bcr2889.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Horwitz KB, Costlow ME, McGuire WL. MCF-7; a human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors. Steroids. 1975;26(6):785–95. https://doi.org/10.1016/0039-128X(75)90110-5.

    Article  CAS  PubMed  Google Scholar 

  41. Hashemi-Moghaddama H, KazemBagsangani S, Jamili M, et al. Evaluation of magnetic nanoparticles coated by 5-fluorouracil imprinted polymer for controlled drug delivery in mouse breast cancer model. Int J Phar. 2016;497(1–2):228–38. https://doi.org/10.1016/j.ijpharm.2015.11.040.

    Article  CAS  Google Scholar 

  42. Breast Cancer Hormone Receptor Status. The American Cancer Society medical and editorial content team. https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancerdiagnosis/breast-cancer-hormone-receptor-status.html . Accessed 20 May 2021.

  43. Pereira DM, Simoes AES, Gomes SE, et al. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget. 2016;7(23):34322–40. https://doi.org/10.18632/oncotarget.9107.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kunnath AP, Kamaruzman NI, Chowdhury EH. Nanoparticle-facilitated intratumoral delivery of Bcl-2/IGF-1R siRNAs and p53 Gene synergistically inhibits tumor growth in immunocompetent mice. J Nanomed Nanotechnol. 2014;6:2. https://doi.org/10.4172/2157-7439.1000278.

    Article  CAS  Google Scholar 

  45. Rashid S, Ali N, Nafees S, et al. Mitigation of 5-Fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats. Food Chem Toxicol. 2014;66:185–93. https://doi.org/10.1016/j.fct.2014.01.026.

    Article  CAS  PubMed  Google Scholar 

  46. Aikemu A, Amat N, Yusup A, et al. Attenuation effect of Abnormal Savda Munziq on liver and heart toxicity caused by chemotherapy in mice. Exp Ther Med. 2016;12(1):384–90. https://doi.org/10.3892/etm.2016.3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chenz M, He B, Wan T, et al. 5-Fluorouracil nanoparticles inhibit hepatocellular carcinoma via activation of the p53 pathway in the orthotopic transplant mouse model. PLoS ONE. 2012;7(10): e47115. https://doi.org/10.1371/journal.pone.0047115.

    Article  CAS  Google Scholar 

  48. Yang T, Aimaiti M, Su D, et al. Enhanced efficacy with reduced toxicity of chemotherapy drug 5-fluorouracil by synergistic treatment with Abnormal Savda Munziq from Uyghur medicine. BMC Complement Altern Med. 2017;17(1):201. https://doi.org/10.1186/s12906-017-1685-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Keisuke K. Caspase-9. Int J Biochem Cell Biol. 2000;32(2):121. https://doi.org/10.1016/S1357-2725(99)00024-2.

    Article  Google Scholar 

  50. Hsu TH, Hung SW, Wu CY, et al. Supplementation of beef extract improves chemotherapy-induced fatigue and toxic effects in mice. J Funct Foods. 2020;75. https://doi.org/10.1016/j.jff.2020.104232.

  51. Ulker D, Barut I, Sener E, et al. Advanced liposome based PEGylated microgel as a novel release system for 5-fluorouracil against MCF-7 cancer cell. Eur Poly J. 2021;146:110270. https://doi.org/10.1016/j.eurpolymj.2021.110270.

    Article  CAS  Google Scholar 

  52. Ulker D, Tuncer C, Sezgin SB, et al. An antibacterial composite system based on multi-responsive microgels hosting monodisperse gold nanoparticles. J Poly Res. 2017;24(10):1–11. https://doi.org/10.1007/s10965-017-1336-y.

    Article  CAS  Google Scholar 

  53. Kirby C, Gregoriadis G. Dehydration-rehydration vesicles - a simple method for high-yield drug entrapment in liposomes. Bio-Technology. 1984;2(11):979–84. https://doi.org/10.1038/nbt1184-979.

    Article  CAS  Google Scholar 

  54. Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–211. https://doi.org/10.1021/cr068445e.

    Article  CAS  PubMed  Google Scholar 

  55. Rahimi M, Yousef M, Cheng Y, et al. Formulation and characterization of a covalently coated magnetic nanogel. J Nanosci Nanotechnol. 2009;9(7):4128–34. https://doi.org/10.1166/jnn.2009.M21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuhn DM, Balkıs M, Chandra J, et al. Uses and limitations of the XTT assay in studies of Candida growth and metabolism. JCM. 2003;41(1):506–8. https://doi.org/10.1128/JCM.41.1.506-508.2003.

    Article  CAS  Google Scholar 

  57. Lizuka K, Jin C, Eshima K, et al. Anti-cancer activity of the intraperitoneal-delivered DFP-10825, the cationic liposome-conjugated RNAi molecule targeting thymidylate synthase, on peritoneal disseminated ovarian cancer xenograft model. Drug Des Devel Ther. 2018;12:673–83. https://doi.org/10.2147/DDDT.S156635.

    Article  Google Scholar 

  58. Sultana S, Alzahrani N, Alzahrani R, et al. Stability issues and approaches to stabilised nanoparticles based drug delivery system. J Drug Target. 2020;28(5):468–86. https://doi.org/10.1080/1061186X.2020.1722137.

    Article  CAS  PubMed  Google Scholar 

  59. Suk SJ, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(part A):28–51. https://doi.org/10.1016/j.addr.2015.09.012.

    Article  CAS  PubMed  Google Scholar 

  60. Marsh S. Thymidylate synthase pharmacogenetics. Invest New Drugs. 2005;23(6):533–7. https://doi.org/10.1007/s10637-005-4021-7.

    Article  CAS  PubMed  Google Scholar 

  61. Sasaki S, Watanabe T, Nakayama H. Analysis of the mRNA expression of chemotherapy-related genes in colorectal carcinoma using the Danenberg tumor profile method. J Oncol. 2013;2013: 386906. https://doi.org/10.1155/2013/386906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saga Y, Suzuki M, Mizukami H, et al. Overexpression of thymidylate synthase mediates desensitization for 5-fluorouracil of tumor cells. Int J Cancer. 2003;106(3):324–6. https://doi.org/10.1002/ijc.11221.

    Article  CAS  PubMed  Google Scholar 

  63. Popat S, Matakidou A, Houlston RS. Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J Clin Oncol. 2004;22(3):529–36. https://doi.org/10.1200/JCO.2004.05.064.

    Article  CAS  PubMed  Google Scholar 

  64. Kamoshida S, Suzuki M, Shimomura R, et al. Immunostaining of thymidylate synthase and p53 for predicting chemoresistance to S-1/cisplatin in gastric cancer. BJC. 2007;96(2):277–83. https://doi.org/10.1038/sj.bjc.6603546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garbar C, Mascaux C, Giustiniani J, et al. Chemotherapy treatment induces an increase of autophagy in the luminal breast cancer cell MCF7, but not in the triple-negative MDA-MB231. Sci Rep. 2017;7(1):7201. https://doi.org/10.1038/s41598-017-07489-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Dr. Emine Dündar of ESOGU of the Medical Pathology for helping us in the pathological and immunohistochemical evaluation. We are also thankful to the veterinarian Salih Salar of KOBAY DLH A.Ş. Experimental Animal Centre for providing the breast cancer model.

Funding

We thank for the financial support of both the Scientific and Technological Research Council of Turkey (grant number: 115Z726 and 1649B03140610 - 2211/C) and the Scientific Research Projects Commission of ESOGU (grand number: 201719D05, 201619C104).

Author information

Authors and Affiliations

Authors

Contributions

Damla Ulker: visualization, methodology, conceptualization, writing—review and editing, validation, writing – original draft, data curation. Rumeysa Ozyurt: validation, data curation, qRT-PCR experiments. Nilufer Erkasap and Vural Butun: supervision, funding acquisition, resources, writing—review and editing.

Corresponding author

Correspondence to Vural Butun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 300 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulker, D., Ozyurt, R., Erkasap, N. et al. Magnetic Targeting of 5-Fluorouracil-Loaded Liposome-Nanogels for In Vivo Breast Cancer Therapy and the Cytotoxic Effects on Liver and Kidney. AAPS PharmSciTech 23, 289 (2022). https://doi.org/10.1208/s12249-022-02438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02438-y

Keywords

Navigation