Skip to main content

Advertisement

Log in

Semisolid Extrusion 3D Printing of Propranolol Hydrochloride Gummy Chewable Tablets: an Innovative Approach to Prepare Personalized Medicine for Pediatrics

  • Research Article
  • Theme: Novel Advances in 3D Printing Technology in Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The demand for personalized medicine has received extensive attention, especially in pediatric preparations. An emerging technology, extrusion-based 3D printing, is highly attractive in the field of personalized medicine. In this study, we prepared propranolol hydrochloride (PR) gummy chewable tablets tailored for children by semisolid extrusion (SSE) 3D printing technology to meet personalized medicine needs in pediatrics. In this study, the effects of critical formulation variables on the rheological properties and printability of gum materials were investigated by constructing a full-factorial design. In addition, the masticatory properties, thermal stability, and disintegration time of the preparations were evaluated. Bitterness inhibitors were used to mask the bitterness of the preparations. The results of the full-factorial design showed that the amount of gelatin and carrageenan were the key factors in the formulation. Gelatin can improve printability and masticatory properties, carrageenan can improve thermal stability, and accelerate the disintegration of preparations; therefore, a reasonable combination of both could satisfactorily meet the demand for high-quality 3D printing. γ-Aminobutyric acid can reduce the bitterness of gummy chewable tablets to improve medication compliance and the determined formulation (F7) met the quality requirements. In conclusion, the gum material has excellent potential as an extrusion material for 3D printing. The dosage can be adjusted flexibly by the model shape and size. 3D printing has broad prospects in pediatric preparations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

AS:

Appearance scoring

ASTM:

American Society for Testing and Materials

BCS:

Biopharmaceutics classification system

CMS-Na:

Sodium carboxymethyl starch

CQAs:

Critical quality attributes

DoE:

Design of experiments

DT:

Disintegration time

G*:

Complex modulus

LVR:

Linear viscoelastic region

ML:

Melting level

PR:

Propranolol hydrochloride

PT:

Printing temperature

QR:

Oscillating rheometer

SSE:

Semisolid extrusion

TA:

Texture analyzer

TPA:

Texture profile analysis

References

  1. Trenfield SJ, Madla CM, Basit AW, Gaisford S. The shape of things to come: Emerging applications of 3D printing in healthcare. In: Basit AW, Gaisford S, editors. 3D printing of pharmaceuticals. Cham: Springer International Publishing; 2018. p. 1–19.

    Google Scholar 

  2. Rycerz K, Stepien KA, Czapiewska M, Arafat BT, Alhnan MA. Embedded 3D printing of novel bespoke soft dosage form concept for pediatrics. Pharmaceutics. 2019;11(12):630.

    Article  CAS  Google Scholar 

  3. Münch J, Meissner T, Mayatepek E, Wargenau M, Breitkreutz J, Bosse HM, et al. Acceptability of small-sized oblong tablets in comparison to syrup and mini-tablets in infants and toddlers: A randomized controlled trial. Eur J Pharm Biopharm. 2021;166:126–34.

    Article  Google Scholar 

  4. Tran J, Gervase MA, Evans J, Deville R, Dong X. The stability of quetiapine oral suspension compounded from commercially available tablets. PLoS ONE. 2021;16(8):e0255963.

    Article  CAS  Google Scholar 

  5. Sjholm E, Mathiyalagan R, Prakash DR, Lindfors L, Sandler N. 3D-printed veterinary dosage forms—a comparative study of three semi-solid extrusion 3D printers. Pharmaceutics. 2020;12(12):1239.

    Article  Google Scholar 

  6. Hong X, Han X, Li X, Li J, Wang Z, Zheng A. Binder jet 3D printing of compound LEV-PN dispersible tablets: An innovative approach for fabricating drug systems with multicompartmental structures. Pharmaceutics. 2021;13(11):1780.

    Article  CAS  Google Scholar 

  7. Khaled SA, Alexander MR, Wildman RD, Wallace MJ, Roberts CJ. 3D extrusion printing of high drug loading immediate release paracetamol tablets. Int J Pharm. 2018;538(1–2):223–30.

    Article  CAS  Google Scholar 

  8. Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications - recent achievements and challenges. Pharm Res. 2018;35(9):176.

    Article  Google Scholar 

  9. Preis M, Oblom H. 3D-printed drugs for children—are we ready yet? AAPS PharmSciTech. 2017;18(2):303–8.

    Article  Google Scholar 

  10. ASTM International. Standard terminology for additive manufacturing technologies.  F2792–12a. 2012. https://yc.mlpla.mil.cn/s/org/astm/www/G.https/f2792-12a.html. Accessed 1 June 2022.

  11. Vaz V, Kumar L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech. 2021;22(1)49.

  12. Scoutaris N, Ross SA, Douroumis D. 3D printed “Starmix” drug loaded dosage forms for paediatric applications. Pharm Res. 2018;35(2):34.

    Article  Google Scholar 

  13. Gordana, Matijai, Matija, Greti, Kristina, Kezeri, et al. Preparation of filaments and the 3D printing of dronedarone hcl tablets for treating cardiac arrhythmias. AAPS PharmSciTech [electronic resource]. 2019;20(8):3.

  14. Jacob S, Nair AB, Patel V, Shah J. 3D printing technologies: Recent development and emerging applications in various drug delivery systems. AAPS PharmSciTech. 2020;21(6):220.

  15. Goyanes A, Madla CM, Umerji A, Duran Piñeiro G, Giraldez Montero JM, Lamas Diaz MJ, et al. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of msud: First single-centre, prospective, crossover study in patients. Int J Pharm. 2019;567:118497.

    Article  CAS  Google Scholar 

  16. Januskaite P, Xu X, Ranmal SR, Gaisford S, Basit AW, Tuleu C, et al. I spy with my little eye: A paediatric visual preferences survey of 3D printed tablets. Pharmaceutics. 2020;12(11):1100.

    Article  CAS  Google Scholar 

  17. Martínez-Monzó J, Cárdenas J, García-Segovia P. Effect of temperature on 3D printing of commercial potato puree. Food Biophysics. 2019;14(5):225–34.

    Article  Google Scholar 

  18. Zidan A, Alayoubi A, Coburn J, Asfari S, Ashraf M. Extrudability analysis of drug loaded pastes for 3D printing of modified release tablets. Int J Pharm. 2018;554:292–301.

    Article  Google Scholar 

  19. Zidan A, Alayoubi A, Asfari S, Coburn J, Ghammraoui B, Aqueel S, et al. Development of mechanistic models to identify critical formulation and process variables of pastes for 3D printing of modified release tablets. Int J Pharm. 2018;555:109–203.

  20. Liu Z, Bhandari B, Prakash S, Mantihal S, Zhang M. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocollo. 2019;87(FEB):413–24.

    Article  CAS  Google Scholar 

  21. Dille MJ, Hattrem MN, Draget KI. Soft, chewable gelatin-based pharmaceutical oral formulations: A technical approach. Pharm Dev Technol. 2018;23(5):504–11.

  22. Karavasili C, Gkaragkounis A, Moschakis T, Ritzoulis C, Fatouros DG. Pediatric-friendly chocolate-based dosage forms for the oral administration of both hydrophilic and lipophilic drugs fabricated with extrusion-based 3D printing. Eur J Pharm Sci. 2020;147:105291.

    Article  CAS  Google Scholar 

  23. Antonio L, Nunzio D, Valentino L, Annalisa C, Massimo F, Miriam R, et al. Taste masking of propranolol hydrochloride by microbeads of eudragit e po obtained with prilling technique for paediatric oral administration - sciencedirect. Int J Pharm. 2019;574:118922.

  24. Sohi H, Sultana Y, Khar RK. Taste masking technologies in oral pharmaceuticals: Recent developments and approaches. Drug Dev Ind Pharm. 2004;30(5):429–48.

    Article  CAS  Google Scholar 

  25. Katsuragi Y, Mitsui Y, Umeda T, Otsuji K, Yamasawa S, Kurihara K. Basic studies for the practical use of bitterness inhibitors: Selective inhibition of bitterness by phospholipids. Pharm Res. 1997;14(6):720–4.

    Article  CAS  Google Scholar 

  26. Keast RS, Breslin PA. Modifying the bitterness of selected oral pharmaceuticals with cation and anion series of salts. Pharm Res. 2002;19(7):1019–26.

    Article  CAS  Google Scholar 

  27. García-Segovia P, García-Alcaraz V, Balasch-Parisi S, Martínez-Monzó J. 3D printing of gels based on xanthan/konjac gums. Innov Food Sci Emerg Technol. 2020;64:102343.

    Article  Google Scholar 

  28. Ogi K, Yamashita H, Terada T, Homma R, Shimizu-Ibuka A, Yoshimura E, et al. Long-chain fatty acids elicit a bitterness-masking effect on quinine and other nitrogenous bitter substances by formation of insoluble binary complexes. J Agric Food Chem. 2015;63(38):8493–500.

    Article  CAS  Google Scholar 

  29. Roy GM. The applications and future implications of bitterness reduction and inhibition in food products. Crit Rev Food Sci Nutr. 1990;29(2):59–71.

    Article  CAS  Google Scholar 

  30. Wang Z, Li J, Hong X, Han X, Liu B, Li X, et al. Taste masking study based on an electronic tongue: The formulation design of 3D printed levetiracetam instant-dissolving tablets. Pharm Res. 2021;38(5):831–42.

  31. Chen K, Vyazovkin S. Temperature dependence of sol-gel conversion kinetics in gelatin-water system. Macromol Biosci. 2009;9(4):383–92.

    Article  CAS  Google Scholar 

  32. Tytgat L, Damme LV, Arevalo M, Declercq H, Vlierberghe SV. Extrusion-based 3D printing of photo-crosslinkable gelatin and κ-carrageenan hydrogel blends for adipose tissue regeneration. Int J Biol Macromol. 2019;140:929–38.

  33. Núnez-Santiago M, Tecante A. Rheological and calorimetric study of the sol–gel transition of κ-carrageenan. Carbohydr Polym. 2007;69(4):763–73.

    Article  Google Scholar 

  34. Yang Y, Wang X, Lin X, Xie L, Yang G. A tunable extruded 3D printing platform using thermo-sensitive pastes. Int J Pharm. 2020;583:119360.

    Article  CAS  Google Scholar 

  35. Alves MM, Antonov YA, Gonçalves MP. Phase equilibria and mechanical properties of gel-like water-gelatin-locust bean gum systems. Int J Biol Macromol. 2000;27(1):41–7.

    Article  CAS  Google Scholar 

  36. Herrada-Manchón H, Rodríguez-González D, Alejandro Fernández M, Suñé-Pou M, Pérez-Lozano P, García-Montoya E, et al. 3D printed gummies: Personalized drug dosage in a safe and appealing way. Int J Pharm. 2020;587:119687.

    Article  Google Scholar 

  37. ContessiNegrini N, Celikkin N, Tarsini P, Farè S, Święszkowski W. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering. Biofabrication. 2020;12(2):025001.

    Article  Google Scholar 

  38. Farahnaky A, Zendeboodi F, Azizi R, Mesbahi G, Majzoobi M. Solubilization of bovine gelatin using power ultrasound: Gelation without heating. J Texture Stud. 2017;48(2):87–94.

    Article  Google Scholar 

  39. Kasapis S, Al-Marhoobi IM. Bridging the divide between the high- and low-solid analyses in the gelatin/kappa-carrageenan mixture. Biomacromol. 2005;6(1):14–23.

    Article  CAS  Google Scholar 

  40. Tagami T, Ito E, Kida R, Hirose K, Ozeki T. 3D printing of gummy drug formulations composed of gelatin and an hpmc-based hydrogel for pediatric use. Int J Pharm. 2021;594:120118.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82073793) and the Beijing Natural Science Foundation of China (No. L202043).

Author information

Authors and Affiliations

Authors

Contributions

Chunxiao Zhu: carried out the experiments, performed data analysis and wrote the paper. Yang Tian, Enhui Zhang, Xiang Gao, Hui Zhang, Nan Liu, Xiaolu Han: participated in part of the experiments. Yong Sun, Zengming Wang and Aiping Zheng: designed the research and modified the paper.

Corresponding author

Correspondence to Yong Sun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1817 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Tian, Y., Zhang, E. et al. Semisolid Extrusion 3D Printing of Propranolol Hydrochloride Gummy Chewable Tablets: an Innovative Approach to Prepare Personalized Medicine for Pediatrics. AAPS PharmSciTech 23, 166 (2022). https://doi.org/10.1208/s12249-022-02304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02304-x

KEY WORDS

Navigation