Skip to main content
Log in

Effect of Temperature on 3D Printing of Commercial Potato Puree

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The temperature and composition of food, during the printing process, maybe a key factor impacting on rheological properties. Currently, there is no evidence of authors analysing the effect of printing temperature on the characteristics of final products. The aim of this paper was to study the printability of potato puree when affected by printing variables, such as printing temperature and the composition of the potato puree. The printing temperature was studied at 10 °C, 20 °C and 30 °C, and the effect of the product composition on the printability was studied by analysing the rheological and textural properties. Viscosity-temperature profiles, flow curves and dynamic oscillation frequency analysis of potato puree were some of the techniques used in rheology analysis. Forward extrusion assays of formulated potato puree were used to study the compression force in the 3D printer. Results showed the formulation with higher content of dehydrated potato puree (38 g of dehydrated potato puree in 250 mL of whole milk) at a temperature of 30 °C were the most stable. The printability increase with the amount of the consistency index and the reduction of behaviour index. The mean force from extrusion test was correlated with printability but the effect of temperature did not help define this parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Ares, A. Giménez, A. Gámbaro, Instrumental methods to characterize nonoral texture of dulce de leche. J. Texture Stud. 37(5), 553–567 (2006). https://doi.org/10.1111/j.1745-4603.2006.00068.x

    Article  Google Scholar 

  2. S. Bhattacharya, N. Vasudha, K.S. Krishna Murthy, Rheology of mustard paste: A controlled stress measurement. J. Food Eng. 41(3), 187–191 (1999). https://doi.org/10.1016/S0260-8774(99)00102-8

    Article  Google Scholar 

  3. F. Chuanxing, W. Qi, L. Hui, Z. Quancheng, M. Wang, Effects of pea protein on the properties of potato starch-based 3D printing materials. Int. J. Food Eng. 14(3), 1–10 (2018). https://doi.org/10.1515/ijfe-2017-0297

    Article  CAS  Google Scholar 

  4. I. Dankar, M. Pujolà, F. El Omar, F. Sepulcre, A. Haddarah, Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3D printing. Food Bioprocess Technol. 11(11), 2021–2031 (2018). https://doi.org/10.1007/s11947-018-2159-5

    Article  CAS  Google Scholar 

  5. A. Derossi, R. Caporizzi, D. Azzollini, C. Severini, Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. J. Food Eng. 220, 65–75 (2018). https://doi.org/10.1016/j.jfoodeng.2017.05.015

    Article  Google Scholar 

  6. F.C. Godoi, S. Prakash, B.R. Bhandari, 3d printing technologies applied for food design: Status and prospects. J. Food Eng. 179, 44–54 (2016). https://doi.org/10.1016/j.jfoodeng.2016.01.025

    Article  Google Scholar 

  7. C.A. Hamilton, G. Alici, M. in het Panhuis, 3D printing vegemite and marmite: Redefining “breadboards”. J. Food Eng. 220, 83–88 (2018). https://doi.org/10.1016/j.jfoodeng.2017.01.008

    Article  Google Scholar 

  8. S. Holland, T. Foster, W. MacNaughtan, C. Tuck, Design and characterisation of food grade powders and inks for microstructure control using 3D printing. J. Food Eng. 220, 12–19 (2018). https://doi.org/10.1016/j.jfoodeng.2017.06.008

    Article  CAS  Google Scholar 

  9. H.W. Kim, H. Bae, H.J. Park, Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material. J. Food Eng. 215, 23–32 (2017). https://doi.org/10.1016/j.jfoodeng.2017.07.017

    Article  CAS  Google Scholar 

  10. C. Le Tohic, J.J. O’Sullivan, K.P. Drapala, V. Chartrin, T. Chan, A.P. Morrison, et al., Effect of 3D printing on the structure and textural properties of processed cheese. J. Food Eng. 220, 56–64 (2018). https://doi.org/10.1016/j.jfoodeng.2017.02.003

    Article  CAS  Google Scholar 

  11. M. Lille, A. Nurmela, E. Nordlund, S. Metsä-Kortelainen, N. Sozer, Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. J. Food Eng. 220, 20–27 (2018). https://doi.org/10.1016/j.jfoodeng.2017.04.034

    Article  CAS  Google Scholar 

  12. H. Lipson, M. Kurman, Fabricated: The New World of 3D Printing (John Wiley and Sons, Inc, New York, 2013)

    Google Scholar 

  13. J.I. Lipton, Printable food: The technology and its application in human health. Curr. Opin. Biotechnol. 44, 198–201 (2017). https://doi.org/10.1016/j.copbio.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  14. Z. Liu, M. Zhang, B. Bhandari, Y. Wang, 3D printing: Printing precision and application in food sector. Trends Food Sci. Technol. 69, 83–94 (2017a, September). https://doi.org/10.1016/j.tifs.2017.08.018

    Article  CAS  Google Scholar 

  15. Liu, Z., Zhang, M., Bhandari, B., & Yang, C. (2017b). Impact of Rheological Properties of Mashed Potatoes on 3D Printing. https://doi.org/10.1016/j.jfoodeng.2017.04.017

  16. Z. Liu, M. Zhang, B. Bhandari, C. Yang, Impact of rheological properties of mashed potatoes on 3D printing. J. Food Eng. 220, 76–82 (2018a). https://doi.org/10.1016/j.jfoodeng.2017.04.017

    Article  Google Scholar 

  17. Z. Liu, M. Zhang, C.h. Yang, Dual extrusion 3D printing of mashed potatoes/strawberry juice gel. Lwt 96(February), 589–596 (2018b). https://doi.org/10.1016/j.lwt.2018.06.014

    Article  CAS  Google Scholar 

  18. S. Mantihal, S. Prakash, F.C. Godoi, B. Bhandari, Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling. Innovative Food Sci. Emerg. Technol. 44(September), 21–29 (2017). https://doi.org/10.1016/j.ifset.2017.09.012

    Article  Google Scholar 

  19. F. Ronda, S. Pérez-Quirce, A. Angioloni, C. Collar, Impact of viscous dietary fibres on the viscoelastic behaviour of gluten-free formulated rice doughs: A fundamental and empirical rheological approach. Food Hydrocoll. 32(2), 252–262 (2013). https://doi.org/10.1016/j.foodhyd.2013.01.014

    Article  CAS  Google Scholar 

  20. C. Severini, A. Derossi, D. Azzollini, Variables affecting the printability of foods: Preliminary tests on cereal-based products. Innov. Food Sci. Emerg. Technol. 38, 281–291 (2016). https://doi.org/10.1016/j.ifset.2016.10.001

    Article  Google Scholar 

  21. C. Severini, A. Derossi, I. Ricci, R. Caporizzi, A. Fiore, Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. J. Food Eng. 220, 89–100 (2018). https://doi.org/10.1016/j.jfoodeng.2017.08.025

    Article  CAS  Google Scholar 

  22. J.R. Stokes, J.H. Telford, Measuring the yield behaviour of structured fluids. J. Non-Newtonian Fluid Mech. 124(1–3 SPEC. ISS), 137–146 (2004). https://doi.org/10.1016/j.jnnfm.2004.09.001

    Article  CAS  Google Scholar 

  23. J. Sun, Z. Peng, W. Zhou, J.Y.H. Fuh, G.S. Hong, A. Chiu, A review on 3D printing for customized food fabrication. Procedia Manufacturing 1, 308–319 (2015). https://doi.org/10.1016/j.promfg.2015.09.057

    Article  Google Scholar 

  24. J. Sun, W. Zhou, L. Yan, D. Huang, L.y. Lin, Extrusion-based food printing for digitalized food design and nutrition control. J. Food Eng. 220, 1–11 (2018). https://doi.org/10.1016/j.jfoodeng.2017.02.028

    Article  Google Scholar 

  25. F. Yang, M. Zhang, B. Bhandari, Recent development in 3D food printing. Crit. Rev. Food Sci. Nutr. 57(14), 3145–3153 (2017). https://doi.org/10.1080/10408398.2015.1094732

    Article  PubMed  Google Scholar 

  26. F. Yang, M. Zhang, B. Bhandari, Y. Liu, Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT Food Sci. Technol. 87, 67–76 (2018). https://doi.org/10.1016/j.lwt.2017.08.054

    Article  CAS  Google Scholar 

  27. M. Zhang, A. Vora, W. Han, R.J. Wojtecki, H. Maune, A.B.A. Le, et al., Dual-responsive hydrogels for direct-write 3D printing. Macromolecules 48(18), 6482–6488 (2015). https://doi.org/10.1021/acs.macromol.5b01550

    Article  CAS  Google Scholar 

  28. L. Zhang, Y. Lou, M.A.I. Schutyser, 3D printing of cereal-based food structures containing probiotics. Food Struct. 18(August), 14–22 (2018). https://doi.org/10.1016/j.foostr.2018.10.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martínez-Monzó.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Monzó, J., Cárdenas, J. & García-Segovia, P. Effect of Temperature on 3D Printing of Commercial Potato Puree. Food Biophysics 14, 225–234 (2019). https://doi.org/10.1007/s11483-019-09576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09576-0

Keywords

Navigation