Skip to main content

Advertisement

Log in

Application of Solvent Parameters for Predicting Organogel Formation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Solvents, accounting the majority of the organogel system, have a tremendous impact on the characteristics of gels. To date, there is a large variety of organogel systems; relatively few have been investigated in the field of structure-solvent correlation. Here, a series of solvent parameters were applied to explore the role of solvent effect on network forming and gel property, intending to build the connection between the precise solvent parameter and gel property. Among the solvent parameters, Kamlet–Taft Parameters and Hansen solubility parameters can distinguish specific types of intermolecular interactions, which could correlate solvent parameter with the gel property. From an analysis of the morphologies obtained from POM and SEM, the gelator structure has an impact on its self-assembly. For possible conformations, the gelators were investigated through XRD. The investigation of solvent-property relationship will provide a theoretical basis for controllable drug delivery implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Loh XJ, Nam Nguyen VP, Kuo N, Li J. Encapsulation of basic fibroblast growth factor in thermogelling copolymers preserves its bioactivity. J Mater Chem. 2011;21(7):2246.

    Article  CAS  Google Scholar 

  2. Kharkar PM, Kiick KL, Kloxin AM. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev. 2013;42(17):7335–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Han L, Xu J, Lu X, Gan D, Wang Z, Wang K, et al. Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair. J Mater Chem B. 2017;5(4):731–41.

    Article  CAS  Google Scholar 

  4. Deng J, Cheng C, Teng Y, Nie C, Zhao C. Mussel-inspired post-heparinization of a stretchable hollow hydrogel tube and its potential application as an artificial blood vessel. Polym Chem. 2017;8(14):2266–75.

    Article  CAS  Google Scholar 

  5. Liu Y, Yang F, Feng L, Yang L, Chen L, Wei G, et al. In vivo retention of poloxamer-based in situ hydrogels for vaginal application in mouse and rat models. Acta Pharm Sin B. 2017;7(4):502–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vintiloiu A, Leroux JC. Organogels and their use in drug delivery—a review. J Control Release. 2008;125(3):179–92.

    Article  PubMed  CAS  Google Scholar 

  7. Sangeetha NM, Maitra U. Supramolecular gels: functions and uses. Chem Soc Rev. 2005;34(10):821–36.

    Article  PubMed  CAS  Google Scholar 

  8. Ye F, Chen S, Tang G, Ma M, Wang X. Self-assembled nanofibrillar gel network toughened PMMA nanocomposite by in situ thermal polymerization of MMA gel. Colloid Surface A. 2015;480:1–10.

    Article  CAS  Google Scholar 

  9. Liow SS, Karim AA, Loh XJ. Biodegradable thermogelling polymers for biomedical applications. MRS Bull. 2016;41(07):557–66.

    Article  CAS  Google Scholar 

  10. Lupi FR, Greco V, Baldino N, de Cindio B, Fischer P, Gabriele D. The effects of intermolecular interactions on the physical properties of organogels in edible oils. J Colloid Interface Sci. 2016;483:154–64.

    Article  PubMed  CAS  Google Scholar 

  11. Huang C-B, Chen L-J, Huang J, Xu L. A novel pyrene-containing fluorescent organogel derived from a quinoline-based fluorescent porbe: synthesis, sensing properties, and its aggregation behavior. RSC Adv. 2014;4(37):19538.

    Article  CAS  Google Scholar 

  12. Pirner D, Dulle M, Mauer MEJ, Förster S. Reinforcement of nanostructured organogels by hydrogen bonds. RSC Adv. 2016;6(48):42730–8.

    Article  CAS  Google Scholar 

  13. Simsolo EE, Eroglu I, Tanriverdi ST, Ozer O. Formulation and evaluation of organogels containing hyaluronan microparticles for topical delivery of caffeine. AAPS PharmSciTech. 2018;19(3):1367–76.

    PubMed  CAS  Google Scholar 

  14. Uzan S, Barış D, Çolak M, Aydın H, Hoşgören H. Organogels as novel carriers for dermal and topical drug delivery vehicles. Tetrahedron. 2016;72(47):7517–25.

    Article  CAS  Google Scholar 

  15. Mandal D, Mandal SK, Ghosh M, Das PK. Phenylboronic acid appended pyrene-based low-molecular-weight injectable hydrogel: glucose-stimulated insulin release. Chem Eur J. 2015;21(34):12042–52.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao Y, Zhou L, Liu J, Chen Z, Yang L, Shi H. Preparation and investigation of a novel levobupivacaine in situ implant gel for prolonged local anesthetics. Artif Cells Nanomed Biotechnol. 2017;45(3):404–8.

    Article  PubMed  CAS  Google Scholar 

  17. Li Z, Cao J, Li H, Liu H, Han F, Liu Z, et al. Self-assembled drug delivery system based on low-molecular-weight bis-amide organogelator: synthesis, properties and in vivo evaluation. Drug Deliv. 2016;23(8):3168–78.

    Article  PubMed  CAS  Google Scholar 

  18. Hu B, Wang W, Wang Y, Yang Y, Xu L, Li S. Degradation of glutamate-based organogels for biodegradable implants: in vitro study and in vivo observation. Mater Sci Eng C Mater Biol Appl. 2018;82:80–90.

    Article  PubMed  CAS  Google Scholar 

  19. Long D, Gong T, Zhang Z, Ding R, Fu Y. Preparation and evaluation of a phospholipid-based injectable gel for the long term delivery of leuprolide acetaterrh. Acta Pharm Sin B. 2016;6(4):329–35.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martin B, Brouillet F, Franceschi S, Perez E. Evaluation of organogel nanoparticles as drug delivery system for lipophilic compounds. AAPS PharmSciTech. 2017;18(4):1261–9.

    Article  PubMed  CAS  Google Scholar 

  21. Gravelle AJ, Davidovich-Pinhas M, Zetzl AK, Barbut S, Marangoni AG. Influence of solvent quality on the mechanical strength of ethylcellulose oleogels. Carbohydr Polym. 2016;135:169–79.

    Article  PubMed  CAS  Google Scholar 

  22. Liu C, Corradini M, Rogers MA. Self-assembly of 12-hydroxystearic acid molecular gels in mixed solvent systems rationalized using Hansen solubility parameters. Colloid Polym Sci. 2015;293(3):975–83.

    Article  CAS  Google Scholar 

  23. Lan Y, Corradini MG, Weiss RG, Raghavan SR, Rogers MA. To gel or not to gel: correlating molecular gelation with solvent parameters. Chem Soc Rev. 2015;44(17):6035–58.

    Article  PubMed  CAS  Google Scholar 

  24. Haldar S, Karmakar K. A systematic understanding of gelation self-assembly: solvophobically assisted supramolecular gelation via conformational reorientation across amide functionality on a hydrophobically modulated dipeptide based ambidextrous gelator, N-n-acyl-(l)Val-X(OBn), (X = 1,ω-amino acid). RSC Adv. 2015;5(81):66339–54.

    Article  CAS  Google Scholar 

  25. Zhao C, Wang H, Bai B, Qu S, Song J, Ran X, et al. Organogels from unsymmetrical [small pi]-conjugated 1,3,4-oxadiazole derivatives. New J Chem. 2013;37(5):1454–60.

    Article  CAS  Google Scholar 

  26. Edwards W, Smith DK. Dynamic evolving two-component supramolecular gels—hierarchical control over component selection in complex mixtures. J Am Chem Soc. 2013;135(15):5911–20.

    Article  PubMed  CAS  Google Scholar 

  27. Bustamante P, Navarro-Lupión J, Peña MA, Escalera B. Hildebrand solubility parameter to predict drug release from hydroxypropyl methylcellulose gels. Int J Pharm. 2011;414(1):125–30.

    Article  PubMed  CAS  Google Scholar 

  28. Bonnet J, Suissa G, Raynal M, Bouteiller L. Organogel formation rationalized by Hansen solubility parameters: dos and don’ts. Soft Matter. 2014;10(18):3154–60.

    Article  PubMed  CAS  Google Scholar 

  29. Bonnet J, Suissa G, Raynal M, Bouteiller L. Organogel formation rationalized by Hansen solubility parameters: influence of gelator structure. Soft Matter. 2015;11(11):2308–12.

    Article  PubMed  CAS  Google Scholar 

  30. Diehn KK, Oh H, Hashemipour R, Weiss RG, Raghavan SR. Insights into organogelation and its kinetics from Hansen solubility parameters. Toward a priori predictions of molecular gelation. Soft Matter. 2014;10(15):2632–40.

    Article  PubMed  CAS  Google Scholar 

  31. Chen S, Tang G, Wu B, Ma M, Wang X. The key effect of the self-assembly mechanism of dendritic gelators: solubility parameters, generations and terminal effects. RSC Adv. 2015;5(44):35282–90.

    Article  CAS  Google Scholar 

  32. Vay K, Scheler S, Frieß W. Application of Hansen solubility parameters for understanding and prediction of drug distribution in microspheres. Int J Pharm. 2011;416(1):202–9.

    Article  PubMed  CAS  Google Scholar 

  33. Gårdebjer S, Andersson M, Engström J, Restorp P, Persson M, Larsson A. Using Hansen solubility parameters to predict the dispersion of nano-particles in polymeric films. Polym Chem. 2016;7(9):1756–64.

    Article  CAS  Google Scholar 

  34. Wang K, Jia Q, Han F, Liu H, Li S. Self-assembled L-alanine derivative organogel as in situ drug delivery implant: characterization, biodegradability, and biocompatibility. Drug Dev Ind Pharm. 2010;36(12):1511–21.

    Article  PubMed  CAS  Google Scholar 

  35. Wang K, Jia Q, Yuan J, Li S. A novel, simple method to simulate gelling process of injectable biodegradable in situ forming drug delivery system based on determination of electrical conductivity. Int J Pharm. 2011;404(1–2):176–9.

    Article  PubMed  CAS  Google Scholar 

  36. Li Z, Cao J, Hu B, Li H, Liu H, Han F, et al. Studies on the in vitro and in vivo degradation behavior of amino acid derivative-based organogels. Drug Dev Ind Pharm. 2016;42(11):1732–41.

    Article  PubMed  CAS  Google Scholar 

  37. Bielejewski M, Kowalczuk J, Kaszynska J, Lapinski A, Luboradzki R, Demchuk O, et al. Novel supramolecular organogels based on a hydrazide derivative: non-polar solvent-assisted self-assembly, selective gelation properties, nanostructure, solvent dynamics. Soft Matter. 2013;9(31):7501–14.

    Article  CAS  Google Scholar 

  38. Edwards W, Lagadec CA, Smith DK. Solvent–gelator interactions—using empirical solvent parameters to better understand the self-assembly of gel-phase materials. Soft Matter. 2011;7(1):110–7.

    Article  CAS  Google Scholar 

  39. Hansen CM. Hansen solubility parameters: a user’s handbook. Milton Park: Taylor & Francis Group; 2007.

    Book  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China under Grant No. 81273445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanming Li.

Electronic supplementary material

ESM 1

(DOCX 973 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Sun, W., Yang, B. et al. Application of Solvent Parameters for Predicting Organogel Formation. AAPS PharmSciTech 19, 2288–2300 (2018). https://doi.org/10.1208/s12249-018-1074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1074-4

KEY WORDS

Navigation