Skip to main content
Log in

Self-assembly of 12-hydroxystearic acid molecular gels in mixed solvent systems rationalized using Hansen solubility parameters

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Recent advances in understanding the underlying mechanisms of self-assembly in molecular gels using Hansen solubility parameters (HSPs) have focused on gelator-single solvent mixtures. Linear correlations between critical gelator concentration (CGC) and polar HSP formed in specific regions where each region has the same proportion of octane with different ratios of either 1-octanol and 1-octylamine. CGC increases with an increasing proportion of 1-octanol and a decreasing proportion of 1-octylamine as the polar HSP increases within each region. Both G′ and breaking points decrease in a log-linear fashion as each individual HSP or total HSP increases, suggesting that 1-octanol-rich gels do not form strong gels because of hydrogen bonding between 1-octanol and 12HSA which is capable of impeding fiber growth. The interaction between 12HSA and 1-octanol is more disruptive to fiber growth than 1-octylamine which arises because of the solvents ability to accept or donate a hydrogen bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Gao J, Wu S, Emge TJ, Rogers MA (2013) Nanoscale and microscale structural changes alter the critical gelator concentration of self-assembled fibrillar networks. CrystEngComm 15(22):4507–4515

    Article  CAS  Google Scholar 

  2. Mallia VA, Butler PD, Sarkar B, Holman KT, Weiss RG (2011) Reversible phase transitions within self-assembled fibrillar networks of (R)-18-(n-Alkylamino)octadecan-7-ols in their carbon tetrachloride gels. J Am Chem Soc 133(38):15045–15054

    Article  CAS  Google Scholar 

  3. Terech P, Weiss RG (2006) Introduction, in molecular gels: materials with self-assembled fibrillar networks. Springer, Dordrecht, pp 1–13

    Google Scholar 

  4. Li J-L, Liu X-Y, Wang R-Y, Xiong J-Y (2005) Architecture of a biocompatible supramolecular material by supersaturation-driven fabrication of its fiber network. J Phys Chem B 109(51):24231–24235

    Article  CAS  Google Scholar 

  5. Rogers MA, Bot A, Lam RSH, Pedersen T, May T (2010) Multicomponent hollow tubules formed using phytosterol and γ-oryzanol-based compounds: an understanding of their molecular embrace. J Phys Chem A 114(32):8278–8285

    Article  CAS  Google Scholar 

  6. Kuwahara T (1996) Crystal structure of DL-12-hydroxystearic acid. Chem Lett 25:435–436

    Article  Google Scholar 

  7. Lam R, Quaroni L, Pedersen T, Rogers MA (2010) A molecular insight into the nature of crystallographic mismatches in self-assembled fibrillar networks under non-isothermal crystallization conditions. Soft Matter 6(2):404–408

    Article  CAS  Google Scholar 

  8. Moffat, J. R.; Smith, D. K., Controlled self-sorting in the assembly of ‘multi-gelator’ gels. Chem Commun (Camb) 2009, (3), 316–8

  9. Brotin TD, Fages JPF (1992) Photostationary fluorescence emission and time resolved spectroscopy of symmetrically disubstituted anthracenes on the meso and side rings: the unusual behavior of the 1,4 derivative. Photochem Photobiol 55:349–358

    Article  CAS  Google Scholar 

  10. Terech P, Furman I, Weiss RG (1995) Structures of organogels based upon cholesteryl 4-(2-Anthryloxy)butanoate, a highly efficient luminescing gelator: neutron and X-ray small-angle scattering investigations. J Phys Chem 99(23):9558–9566

    Article  CAS  Google Scholar 

  11. Toro-Vazquez JF, Morales-Rueda J, Mallia VA, Weiss RG (2010) Relationship between molecular structure and thermo-mechanical properties of candelilla wax and amides derived from (R)-12-hydroxystearic acid as gelators of safflower oil. Food Biophys 5(3):193–202

    Article  Google Scholar 

  12. Wu Y, Wu S, Zou G, Zhang Q (2011) Solvent effects on structure, photoresponse and speed of gelation of a dicholesterol-linked azobenzene organogel. Soft Matter 7(19):9177–9183

    Article  CAS  Google Scholar 

  13. Gao J, Wu S, Rogers MA (2012) Harnessing Hansen solubility parameters to predict organogel formation. J Mater Chem 22(25):12651–12658

    Article  CAS  Google Scholar 

  14. Kubo W, T KM, Kitamura S, Yodhida M, Haruki K, Hanabusa H, Shirai Y, Wada, Yanagida S (2011) Quasi-solid- state dye-sensitized TiO2 solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine. Phys Chem B 105:12809–12815

    Article  Google Scholar 

  15. Sugiyasu K, a Ss NF (2004) Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. Chem Int Ed 43:1229–1233

    Article  CAS  Google Scholar 

  16. Friggeri A, Feringa BL, van Esch J (2004) Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator. ContrL Rel 97:241–248

    Article  CAS  Google Scholar 

  17. Marangoni A (2012) Organogels: an alternative edible oil-structuring method. J Am Oil Chem Soc 89(5):749–780

    Article  CAS  Google Scholar 

  18. Raynal M, Bouteiller L (2011) Organogel formation rationalized by Hansen solubility parameters. Chem Commun 47(29):8271–8273

    Article  CAS  Google Scholar 

  19. Fan K, Niu L, Li J, Feng R, Qu R, Liu T, Song J (2013) Application of solubility theory in bi-component hydrogels of melamine with di(2-ethylhexyl) phosphoric acid. Soft Matter 9(11):3057–3062

    Article  CAS  Google Scholar 

  20. Niu L, Song J, Li J, Tao N, Lu M, Fan K (2013) Solvent effects on the gelation performance of melamine and 2-ethylhexylphosphoric acid mono-2-ethylhexyl ester in water-organic mixtures. Soft Matter 9(32):7780–7786

    Article  CAS  Google Scholar 

  21. Bielejewski M, Łapiński A, Luboradzki R, Tritt-Goc J (2009) Solvent effect on 1,2-O-(1-ethylpropylidene)-α-d-glucofuranose organogel properties. Langmuir 25(14):8274–8279

    Article  CAS  Google Scholar 

  22. Zhu P, Yan X, Su Y, Yang Y, Li J (2010) Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chemistry 16(10):3176–3183

    Article  CAS  Google Scholar 

  23. Kaszyńska J, Łapiński A, Bielejewski M, Luboradzki R, Tritt-Goc J (2012) On the relation between the solvent parameters and the physical properties of methyl-4,6-O-benzylidene-α-d-glucopyranoside organogels. Tetrahedron 68(20):3803–3810

    Article  Google Scholar 

  24. Wu S, Gao J, Emge TJ, Rogers MA (2013) Solvent-induced polymorphic nanoscale transitions for 12-hydroxyoctadecanoic acid molecular gels. Cryst Growth Des 13(3):1360–1366

    Article  CAS  Google Scholar 

  25. Wu S, Gao J, Emge TJ, Rogers MA (2013) Influence of solvent on the supramolecular architectures in molecular gels. Soft Matter 9(25):5942–5950

    Article  CAS  Google Scholar 

  26. Hirst AR, Smith DK, Feiters MC, Geurts HP (2004) Two-component dendritic gel: effect of stereochemistry on the supramolecular chiral assembly. Chemistry 10(23):5901–5910

    Article  CAS  Google Scholar 

  27. Bonnet J, Suissa G, Raynal M, Bouteiller L (2014) Organogel formation rationalized by Hansen solubility parameters: dos and don’ts. Soft Matter 10(18):3154–3160

    Article  CAS  Google Scholar 

  28. Curcio P, Allix F, Pickaert G, Jamart-Grégoire B (2011) A favorable, narrow, δh Hansen-parameter domain for gelation of low-molecular-weight amino acid derivatives. Chem Eur J 17(48):13603–13612

    Article  CAS  Google Scholar 

  29. Yan Ni, N.; Xu Zhiyan, Z.; Diehn Kevin, K. K.; Raghavan Srinivasa, R. S.; Fang Yu, Y.; Weiss Richard, G. R., 2013; Vol. 135, p 8989–99

  30. Yan N, Xu Z, Diehn KK, Raghavan SR, Fang Y, Weiss RG (2013) How do liquid mixtures solubilize insoluble gelators? Self-assembly properties of pyrenyl-linker-glucono gelators in tetrahydrofuran—water mixtures. J Am Chem Soc 135(24):8989–8999

    Article  CAS  Google Scholar 

  31. Tong C, Fan K, Niu L, Li J, Guan X, Tao N, Shen H, Song J (2014) Application of solubility parameters in a d-sorbitol-based organogel in binary organic mixtures. Soft Matter 10(5):767–772

    Article  CAS  Google Scholar 

  32. Shen H, Niu L, Fan K, Li J, Guan X, Song J (2014) Application of solubility parameters in 1,3:2,4-Bis(3,4-dimethylbenzylidene)sorbitol organogel in binary organic mixtures. Langmuir 30(30):9176–9182

    Article  CAS  Google Scholar 

  33. Diehn KK, Oh H, Hashemipour R, Weiss RG, Raghavan SR (2014) Insights into organogelation and its kinetics from Hansen solubility parameters. Toward a priori predictions of molecular gelation. Soft Matter 10(15):2632–2640

    Article  CAS  Google Scholar 

  34. Lan, Y.; Corradini, M. G.; Liu, X.; May, T. E.; Borondics, F.; Weiss, R. G.; Rogers, M. A. (2014) Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1,3:2,4-dibenzylidene sorbitol as the gelator. Langmuir

  35. Abdala AA, Olesen K, Khan SA (2003) Solution rheology of hydrophobically modified associative polymers: solvent quality and hydrophobic interactions. J Rheol 47(2):497

    Article  CAS  Google Scholar 

  36. E. A. Grulke, J. W. S. N. Y. (2005) Solubility parameter values. NewYork (4th edn)

  37. Jang M, Kamens RM, Leach KB, Strommen MR (1997) A thermodynamic approach using group contribution methods to model the partitioning of semivolatile organic compounds on atmospheric particulate matter. Environ Sci Technol 31:2805–2811

    Article  CAS  Google Scholar 

  38. Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14:147–154

    Article  CAS  Google Scholar 

  39. Lindvig T, Michelsen ML, Kontogeorgis GM (2002) A Flory–Huggins model based on the Hansen solubility parameters. Fluid Phase Equilib 203(1–2):247–260

    Article  CAS  Google Scholar 

  40. Fabri D, Guan J, Cesàro A (1998) Crystallisation and melting behaviour of poly (3-hydroxybutyrate) in dilute solution: towards an understanding of physical gels. Thermochim Acta 321(1–2):3–16

    Article  CAS  Google Scholar 

  41. Feng L, Cavicchi KA (2012) Investigation of the relationships between the thermodynamic phase behavior and gelation behavior of a series of tripodal trisamide compounds. Soft Matter 8(24):6483–6492

    Article  CAS  Google Scholar 

  42. Hirst AR, Coates IA, Boucheteau TR, Miravet JF, Escuder B, Castelletto V, Hamley IW, Smith DK (2008) Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J Am Chem Soc 130(28):9113–9121

    Article  CAS  Google Scholar 

Download references

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rogers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Corradini, M. & Rogers, M.A. Self-assembly of 12-hydroxystearic acid molecular gels in mixed solvent systems rationalized using Hansen solubility parameters. Colloid Polym Sci 293, 975–983 (2015). https://doi.org/10.1007/s00396-014-3480-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3480-9

Keywords

Navigation