Skip to main content

Advertisement

Log in

Zein Microneedles for Localized Delivery of Chemotherapeutic Agents to Treat Breast Cancer: Drug Loading, Release Behavior, and Skin Permeation Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Localized delivery of chemotherapeutic agents to treat breast cancer could limit their adverse drug reactions. The aim of this study was to investigate the influence of physico-chemical properties of chemotherapeutic agents in their loading, release behavior, and skin permeation using microneedles. Zein microneedles were fabricated using the micromolding technique containing 36 microneedles in a 1-cm2 area. These microneedles were loaded with two anti-breast cancer drugs, tamoxifen and gemcitabine, having different water solubilities. Entrapment or surface coating of chemotherapeutic agents in zein microneedles was optimized to achieve greater loading efficiency. The greatest loading achieved was 607 ± 21 and 1459 ± 74 μg for tamoxifen and gemcitabine using the entrapment approach, respectively. Skin permeation studies in excised porcine skin showed that the coating on microneedles approach results in greater skin deposition for tamoxifen; while the poke-and-patch approach would provide greater skin permeation for gemcitabine. Taken together, it can be concluded that different loading strategies and skin penetration approaches have to be studied for delivery of small molecules using polymeric microneedles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang C, Ye Y, Gu Z. Local delivery of checkpoints antibodies. Hum Vaccin Immunother. 2017;13(1):245–8. https://doi.org/10.1080/21645515.2016.1223000.

    Article  PubMed  Google Scholar 

  2. Junwei L, Mingtao Z, Shan H, Chunyi T. Microneedle patches as drug and vaccine delivery platform. Curr Med Chem. 2017;24(22):2413–22. https://doi.org/10.2174/0929867324666170526124053.

    Google Scholar 

  3. Bhatnagar S, Dave K, Venuganti VVK. Microneedles in the clinic. J Control Release. 2017;260:164–82. https://doi.org/10.1016/j.jconrel.2017.05.029.

    Article  CAS  PubMed  Google Scholar 

  4. Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68. https://doi.org/10.1016/j.addr.2012.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Widera G, Johnson J, Kim L, Libiran L, Nyam K, Daddona PE, et al. Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine. 2006;24(10):1653–64. https://doi.org/10.1016/j.vaccine.2005.09.049.

    Article  CAS  PubMed  Google Scholar 

  6. Bediz B, Korkmaz E, Khilwani R, Donahue C, Erdos G, Falo LD Jr, et al. Dissolvable microneedle arrays for intradermal delivery of biologics: fabrication and application. Pharm Res. 2014;31(1):117–35. https://doi.org/10.1007/s11095-013-1137-x.

    Article  CAS  PubMed  Google Scholar 

  7. Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, Pettis RJ, Harvey NG. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med. 2002;8(4):415–9.

    Article  CAS  PubMed  Google Scholar 

  8. Indermun S, Luttge R, Choonara YE, Kumar P, du Toit LC, Modi G, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130–8. https://doi.org/10.1016/j.jconrel.2014.04.052.

    Article  CAS  PubMed  Google Scholar 

  9. Ita K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics. 2015;7(3):90–105. https://doi.org/10.3390/pharmaceutics7030090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tuan-Mahmood TM, McCrudden MT, Torrisi BM, McAlister E, Garland MJ, Singh TR, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623–37. https://doi.org/10.1016/j.ejps.2013.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhatnagar S, Chawla SR, Kulkarni OP, Venuganti VVK. Zein microneedles for transcutaneous vaccine delivery: fabrication, characterization, and in vivo evaluation using ovalbumin as the model antigen. ACS Omega. 2017;2(4):1321–32. https://doi.org/10.1021/acsomega.7b00343.

    Article  CAS  Google Scholar 

  12. Donnelly RF, Majithiya R, Singh TR, Morrow DI, Garland MJ, Demir YK, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28(1):41–57. https://doi.org/10.1007/s11095-010-0169-8.

    Article  CAS  PubMed  Google Scholar 

  13. Lee JW, Han M-R, Park J-H. Polymer microneedles for transdermal drug delivery. J Drug Target. 2013;21(3):211–23. https://doi.org/10.3109/1061186X.2012.741136.

    Article  CAS  Google Scholar 

  14. Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res. 2006;23(5):1008–19. https://doi.org/10.1007/s11095-006-0028-9.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu Z, Luo H, Lu W, Luan H, Wu Y, Luo J, et al. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm Res. 2014;31(12):3348–60. https://doi.org/10.1007/s11095-014-1424-1.

    Article  CAS  PubMed  Google Scholar 

  16. Milewski M, Brogden NK, Stinchcomb AL. Current aspects of formulation efforts and pore lifetime related to microneedle treatment of skin. Expert Opin Drug Deliv. 2010;7(5):617–29. https://doi.org/10.1517/17425241003663228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104(Supplement C):1–32. https://doi.org/10.1016/j.mser.2016.03.001.

    Article  Google Scholar 

  18. Gill HS, Prausnitz MR. Coating formulations for microneedles. Pharm Res. 2007;24(7):1369–80. https://doi.org/10.1007/s11095-007-9286-4.

    Article  CAS  PubMed  Google Scholar 

  19. Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv. 2010;17(4):187–207. https://doi.org/10.3109/10717541003667798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shukla R, Cheryan M. Zein: the industrial protein from corn. Ind Crop Prod. 2001;13(3):171–92. https://doi.org/10.1016/S0926-6690(00)00064-9.

    Article  CAS  Google Scholar 

  21. Gao S, Singh J. In vitro percutaneous absorption enhancement of a lipophilic drug tamoxifen by terpenes. J Control Release. 1998;51(2):193–9. https://doi.org/10.1016/S0168-3659(97)00168-5.

    Article  CAS  PubMed  Google Scholar 

  22. Fontana G, Maniscalco L, Schillaci D, Cavallaro G, Giammona G. Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity. Drug delivery. 2005;12(6):385–92. https://doi.org/10.1080/10717540590968855.

    Article  CAS  PubMed  Google Scholar 

  23. Heel RC, Brogden RN, Speight TM, Avery GS. Tamoxifen: a review of its pharmacological properties and therapeutic use in the treatment of breast cancer. Drugs. 1978;16(1):1–24. https://doi.org/10.2165/00003495-197816010-00001.

    Article  CAS  PubMed  Google Scholar 

  24. Chawla JS, Amiji MM. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm. 2002;249(1):127–38. https://doi.org/10.1016/S0378-5173(02)00483-0.

    Article  CAS  PubMed  Google Scholar 

  25. Jena SK, Singh C, Dora CP, Suresh S. Development of tamoxifen-phospholipid complex: novel approach for improving solubility and bioavailability. Int J Pharm. 2014;473:1):1–9. https://doi.org/10.1016/j.ijpharm.2014.06.056.

    Article  PubMed  Google Scholar 

  26. Aapro MS, Martin C, Hatty S. Gemcitabine—a safety review. Anti-Cancer Drugs. 1998;9(3):191–202.

    Article  CAS  PubMed  Google Scholar 

  27. Trickler WJ, Khurana J, Nagvekar AA, Dash AK. Chitosan and glyceryl monooleate nanostructures containing gemcitabine: potential delivery system for pancreatic cancer treatment. AAPS PharmSciTech. 2010;11(1):392–401. https://doi.org/10.1208/s12249-010-9393-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poulin P, Chen Y-H, Ding X, Gould SE, Hop CE, Messick K, et al. Prediction of drug distribution in subcutaneous xenografts of human tumor cell lines and healthy tissues in mouse: application of the tissue composition-based model to antineoplastic drugs. J Pharm Sci. 104(4):1508–21. https://doi.org/10.1002/jps.24336.

  29. Joshi G, Kumar A, Sawant K. Enhanced bioavailability and intestinal uptake of gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Eur J Pharm Sci. 2014;60(Supplement C):80–9. https://doi.org/10.1016/j.ejps.2014.04.014.

    Article  CAS  PubMed  Google Scholar 

  30. Chitkara D, Kumar N. BSA-PLGA-based core-shell nanoparticles as carrier system for water-soluble drugs. Pharm Res. 2013;30(9):2396–409. https://doi.org/10.1007/s11095-013-1084-6.

    Article  CAS  PubMed  Google Scholar 

  31. Osborne TB. Classification of vegetable proteins. In: Osborne TB, editor. The vegetable proteins. New York: Longmans, Green and Co.; 1924. p. 25–35.

    Google Scholar 

  32. Coleman CE, Larkins BA. The prolamins of maize. In: Shewry PR, Casey R, editors. Seed proteins. The Netherlands: Kluwer Academic Publishers; 1999. p. 109–39.

    Chapter  Google Scholar 

  33. Thompson GA, Larkins BA. Structural elements regulating zein gene expression. BioEssays. 1989;10(4):108–13. https://doi.org/10.1002/bies.950100404.

    Article  CAS  PubMed  Google Scholar 

  34. Wilson CM. Proteins of the kernel. In: Watson SA, Ramstad PE, editors. Corn: chemistry and technology. St. Paul: Am. Assoc. Cereal Chem; 1987. p. 273–310.

    Google Scholar 

  35. Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. J Control Release. 2014;189:108–22.

    Article  CAS  PubMed  Google Scholar 

  36. Jane J, Lim S, Paetau I, Spence K, Wang S. Biodegradable plastics made from agricultural biopolymers. ACS Publications; 1994.

  37. Lawton JW. Zein: a history of processing and use. Cereal Chem J. 2002;79(1):1–18. https://doi.org/10.1094/CCHEM.2002.79.1.1.

    Article  CAS  Google Scholar 

  38. Clemons M, Danson S, Howell A. Tamoxifen (‘Nolvadex’): a review: antitumour treatment. Cancer Treat Rev. 2002;28(4):165–80.

    Article  CAS  PubMed  Google Scholar 

  39. Bhatia A, Kumar R, Katare OP. Tamoxifen in topical liposomes: development, characterization and in-vitro evaluation. J Pharm Pharm Sci. 2004;7(2):252–9.

    CAS  PubMed  Google Scholar 

  40. Manosroi A, Kongkaneramit L, Manosroi J. Stability and transdermal absorption of topical amphotericin B liposome formulations. Int J Pharm. 2004;270(1):279–86. https://doi.org/10.1016/j.ijpharm.2003.10.031.

    Article  CAS  PubMed  Google Scholar 

  41. Ng S-F, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech. 2010;11(3):1432–41. https://doi.org/10.1208/s12249-010-9522-9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Williams FM. In vitro studies—how good are they at replacing in vivo studies for measurement of skin absorption? Environ Toxicol Pharmacol. 2006;21(2):199–203. https://doi.org/10.1016/j.etap.2005.07.009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by BITS Pilani. The texture analyzer and multimode plate reader were procured using a grant from the Department of Science and Technology—Fund for Improvement of Science and Technology infrastructure (DST FIST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Vamsi Krishna Venuganti.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

Figure S1

(DOCX 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatnagar, S., Kumari, P., Pattarabhiran, S.P. et al. Zein Microneedles for Localized Delivery of Chemotherapeutic Agents to Treat Breast Cancer: Drug Loading, Release Behavior, and Skin Permeation Studies. AAPS PharmSciTech 19, 1818–1826 (2018). https://doi.org/10.1208/s12249-018-1004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1004-5

KEY WORDS

Navigation