Skip to main content

Advertisement

Log in

Characterization of Antimicrobial Agent Loaded Eudragit RS Solvent Exchange-Induced In Situ Forming Gels for Periodontitis Treatment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Eudragit RS (ERS), a quaternary polyacrylate positively charged polymer, exhibits a very low permeability and swells in aqueous media independently of pH without dissolving. Owing to its high solubility in N-methyl pyrrolidone (NMP), it was interesting to apply as polymer matrix for solvent-exchanged in situ forming gel. The aim of this research was to prepare in situ forming gels from ERS to deliver the antimicrobial agents (doxycycline hyclate, metronidazole, and benzoyl peroxide) for periodontitis treatment. They were evaluated for viscosity and rheology, gel formation, syringeability, drug release, and antimicrobial activities. The solvent exchange between NMP and an external aqueous simulated gingival crevicular fluid stimulated the dissolved ERS transforming into the opaque rigid gel. Antimicrobial agent loaded ERS systems exhibited Newtonian flow with acceptable syringeability. The higher-loaded ERS promoted the more prolongation of drug release because of the retardation of water diffusion into the precipitated matrix. Antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis depended on type of drugs and test microorganisms. Doxycycline hyclate loaded ERS systems showed these activities greater than the others; however, all of them could inhibit all test microorganisms. Thus, the solvent exchange-induced in situ forming gels comprising ERS-antimicrobial drugs exhibited potential use as localized delivery systems for periodontitis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rowe RC, Sheskey PJ, Quinn EM. Handbook of pharmaceutical excipients. The sixth ed. Washington, DC: Pharmaceutical Press and American Pharmaceutical Association; 2009.

    Google Scholar 

  2. Akhgari A, Farahmand F, Afrasiabi GH, Sadeghi F, Vandamme TF. Permeability and swelling studies on free films containing inulin in combination with different polymethacrylates aimed for colonic drug delivery. Eur J Pharm Sci. 2006;28(4):307–14.

    Article  CAS  PubMed  Google Scholar 

  3. Patel RR, Patel JK. Development and evaluation of in situ novel intragastric controlled-release formulation of hydrochlorothiazide. Acta Pharma. 2011;61:73–82.

    Article  CAS  Google Scholar 

  4. Sawant PD, Luu D, Ye R, Buchta R. Drug release from hydroethanolic gels. Effect of drug’s lipophilicity (log P), polymer–drug interactions and solvent lipophilicity. Int J Pharm. 2010;396:45–52.

    Article  CAS  PubMed  Google Scholar 

  5. Addy M, Langeroudi M. Comparison of the immediate effects on the sub-gingival microflora of acrylic strips containing 40% chlorhexidine, metronidazole or tetracycline. J Clin Periodontol. 1984;1:379–86.

    Article  Google Scholar 

  6. Addy M, Hassan H, Moran J, Wade W, Newcombe R. Use of antimicrobial containing acrylic strips in the treatment of chronic periodontal disease. A three month follow-up study. J Periodontol. 1988;59(9):557–64.

    Article  CAS  PubMed  Google Scholar 

  7. Higashi K, Matsushita M, Morisaki K, Hayashi SI, Mayumi T. Local drug delivery systems for the treatment of periodontal disease. J Pharmacobio-Dyn. 1991;14:72–81.

    Article  CAS  PubMed  Google Scholar 

  8. Xiong W, Gao X, Zhao Y, Xu H, Yang X. The dual temperature/pH-sensitive multiphase behavior of poly(N-isopropylacrylamide-co-acrylic acid) microgels for potential application in in situ gelling system. Colloids Surf, B: Bointerfaces. 2011;84:103–10.

    Article  CAS  Google Scholar 

  9. Solorio L, Olear AM, Hamilton JI, Patel RB, Beiswenger AC, Wallace JE, et al. Noninvasive characterization of the effect of varying PLGA molecular weight blends on in situ forming implant behavior using ultrasound imaging. Theranostics. 2012;2(11):1064–77. doi:10.7150/thno.4181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phaechamud T, Mahadlek J, Chuenbarn T. In situ forming gel comprising bleached shellac loaded with antimicrobial drugs for periodontitis treatment. Mater Des. 2016;494:381–92. doi:10.1016/j.matdes.2015.09.138.

    Google Scholar 

  11. Phaechamud T, Mahadlek J. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs. Int J Pharm. 2015;494:381–92. doi:10.1016/j.msec.2015.09.083.

    Article  CAS  PubMed  Google Scholar 

  12. Schwach AK, Vivien CN, Gurny R. Local delivery of antimicrobial agents for the treatment of periodontal diseases. Eur J Pharm Biopharm. 2000;50:83–99.

    Article  Google Scholar 

  13. Malik K, Singh I, Nagpal M, Arora S. Atrigel: a potential parenteral controlled drug delivery system. Der Pharm Sin. 2010;1(1):74–81.

    CAS  Google Scholar 

  14. Jain N, Jain GK, Javed S, Iqbal Z, Talegaonkar S, Ahmad FJ, et al. Recent approaches for the treatment of periodontitis. Drug Discov Today. 2008;13:932–43.

    Article  CAS  PubMed  Google Scholar 

  15. Sanghvi R, Narazaki R, Machatha SG, Yalkowsky SH. Solubility improvement of drugs using N-methyl pyrrolidone. AAPS PharmSciTech. 2008;9:366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Engelhardt G, Fleig H. Methyl-2-pyrrolidinone (NMP) does not induce structural and numerical chromosomal aberrations in vivo. Mutat Res Genet Tox. 1993;298:149–55.

    Article  CAS  Google Scholar 

  17. Heidari MR. Reference module in biomedical sciences, from encyclopedia of toxicology (3rd edition), 2014, pp. 588–593.

  18. Liu Q, Zhang H, Zhou G, Xie S, Zou H, Yu Y, et al. In vitro and in vivo study of thymosin alpha1 biodegradable in situ forming poly(lactide-co-glycolide) implants. Int J Pharm. 2010;2010(397):122–9.

    Article  Google Scholar 

  19. Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21:201–30.

    Article  CAS  PubMed  Google Scholar 

  20. Jouyban A, Fakhree MA, Shayanfar A. Review of pharmaceutical applications of N-methyl-2-pyrrolidone. J Pharm Pharm Sci. 2010;13(4):524–35.

    Article  CAS  PubMed  Google Scholar 

  21. Mahadlek J, Phaechamud T. Metrodidazole in situ forming eudragit RS gel comprising different solvents. Key Eng Mater. 2015;659:13–8.

    Article  Google Scholar 

  22. Mahadlek J, Charoenteeraboon J, Phaechamud T. Benzoyl peroxide in situ forming antimicrobial gel for periodontitis treatment. Key Eng Mater. 2013;545:63–8.

    Article  Google Scholar 

  23. Martin A. Physical pharmacy. Philadelphia: Lea and Febiger; 1993. p. 393–476.

    Google Scholar 

  24. Popa L, Ghica MV, Dinu-Pirvu C. Periodontal chitosan-gels designed for improved local intra-pocket drug delivery. Farmacia. 2013;61(2):240–9.

    CAS  Google Scholar 

  25. MicroMath Scientist Handbook Rev. 7EEF, MicroMath: Salt Lake City, 1995, p: 467.

  26. Kogawa AC, Salgado HR. Doxycycline hyclate: a review of properties, applications and analytical methods. Int J Life Sci Pharm Res. 2012;2(4):11–25.

    CAS  Google Scholar 

  27. Alexander KS, Vangala SS, Dollimore D. The formulation development and stability of metronidazole suspension. Int J Pharm Compd. 1999;1(3):200–5.

    Google Scholar 

  28. Mayol L, Quaglia F, Borzacchiello A, Ambrosio L, Rotonda MIL. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties. Eur J Pharm Biopharm. 2008;70:199–206.

    Article  CAS  PubMed  Google Scholar 

  29. Fresno MJC, Ramirez AD, Jimenez MM. Systematic study of the flow behavior and mechanical properties of carbopol® UltrezTM 10 hydroalcoholic gels. Eur J Pharm Biopharm. 2002;54:329–35.

    Article  CAS  PubMed  Google Scholar 

  30. Gad HA, El-Nabarawi MA, Abd El-Hady SS. Formulation and evaluation of PLA and PLGA in situ implants containing secnidazole and/or doxycycline for treatment of periodontitis. AAPS PharmSciTech. 2008;9(3):878–84. doi:10.1208/s12249-008-9126-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang JY, Oh Y-K, Choi H, Kim YB, Kim C-K. Rheological evaluation of thermosensitive and mucoadhesive vaginal gels in physiological conditions. Int J Pharm. 2002;241:155–63.

    Article  CAS  PubMed  Google Scholar 

  32. Miyazaki S, Kubo W, Itoh K, Konno Y, Fujiwara M, Dairaku M, et al. The effect of taste masking agents on in situ gelling pectin formulations for oral sustained delivery of paracetamol and ambroxol. Int J Pharm. 2005;297:38–49.

    Article  CAS  PubMed  Google Scholar 

  33. Rungseevijitprapa W, Bodmeier R. Injectability of biodegradable in situ forming microparticle systems (ISM). Eur J Pharm Sci. 2009;36:524–31.

    Article  CAS  PubMed  Google Scholar 

  34. Abashzadeh S, Dinarvand R, Sharifzadeh M, Hassanzadeh G, Amini M, Atyabi F. Formulation and evaluation of an in situ gel forming system for controlled delivery of triptorelin acetate. Eur J Pharm. 2011;44:514–21.

    Article  CAS  Google Scholar 

  35. Yang L, Fassihi R. Examination of drug solubility, polymer types, hydrodynamics and loading dose on drug release behavior from a triple-layer asymmetric configuration delivery system. Int J Pharm. 1997;155:219–29.

    Article  CAS  Google Scholar 

  36. Khuathan N, Pongjanyakul T. Modification of quaternary polymethacrylate films using sodium alginate: film characterization and drug permeability. Int J Pharm. 2014;460(1–2):63–72.

    Article  CAS  PubMed  Google Scholar 

  37. Sánchez-Lafuente C, Faucci MT, Fernández-Arévalo M, Álvarez-Fuentes J, Rabasco AM, Mura P. Development of sustained release matrix tablets of didanosine containing methacrylic and ethylcellulose polymers. Int J Pharm. 2002;234:213–21.

    Article  PubMed  Google Scholar 

  38. Yamamoto S, Saeki T, Inoshita T. Drying of gelled sugar solutions—water diffusion behavior. Chem Eng J. 2002;86:179–84.

    Article  CAS  Google Scholar 

  39. Wang L, Wang A, Zhao X, Liu X, Wang D, Sun F, et al. Design of a long-term antipsychotic in situ forming implant and its release control method and mechanism. Int J Pharm. 2012;427:284–92.

    Article  CAS  PubMed  Google Scholar 

  40. Fu XC, Wang GP, Liang WQ, Chow MS. Prediction of drug release from HPMC matrices: effect of physicochemical properties of drug and polymer concentration. J Control Release. 2004;95:209–16.

    Article  CAS  PubMed  Google Scholar 

  41. Brodbeck KJ, DesNoyer JR, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery: part II. The role of solution thermodynamics and bath-side mass transfer. J Control Release. 1999;62(3):333–44.

    Article  CAS  PubMed  Google Scholar 

  42. Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364:298–327.

    Article  CAS  PubMed  Google Scholar 

  43. Mocanu G, Airinei A, Carpov A. Macromolecular drug conjugates II. Metronidazole-dextran prodrugs. J Bioact Compat Polym. 1993;8(4):383–92.

    Article  CAS  Google Scholar 

  44. Kiortsis S, Kachrimanis K, Broussali T, Malamataris S. Drug release from tableted wet granulations comprising cellulosic (HPMC or HPC) and hydrophobic component. Eur J Pharm Biopharm. 2005;59:73–83.

    Article  CAS  PubMed  Google Scholar 

  45. Reza MS, Quadir MA, Haider SS. Comparative evaluation of plastic, hydrophobic and hydrophilic matrices for controlled-release drug delivery. J Pharm Phram Sci. 2003;6(2):282–91.

    CAS  Google Scholar 

  46. Siepmann J, Peppas NA. Modelling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48:139–57.

    Article  CAS  PubMed  Google Scholar 

  47. Poursamar SA, Azami M, Mozafari M. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique. Colloid Surface B. 2011;84(2):310–6.

    Article  CAS  Google Scholar 

  48. Ren D, Yi H, Zhang H, Xie W, Wang W, Ma X. A preliminary study on fabrication of nanoscale fibrous chitosan membranes in situ by biospecific degradation. J Membr Sci. 2006;280:99–107.

    Article  CAS  Google Scholar 

  49. Hoffart V, Lamprecht A, Maincent P, Lecompte T, Vigneron C, Ubrich N. Oral bioavailability of a low molecular weight heparin using a polymeric delivery system. J Control Release. 2006;113:38–42.

    Article  CAS  PubMed  Google Scholar 

  50. Gargouri M, Sapin A, Bouali S, Becuwe P, Merlin JL, Maincent P. Optimization of a new non-viral vector for transfection: Eudragit nanoparticles for the delivery of DNA plasmid. Technol Cancer Res Treat. 2009;8:433–44.

    Article  CAS  PubMed  Google Scholar 

  51. Eidi H, Joubert O, Attik G, Duval RE, Bottin MC, Hamouia A, et al. Cytotoxicity assessment of heparin nanoparticles in NR8383 macrophages. Int J Pharm. 2010;396:156–65. doi:10.1016/j.ijpharm.2010.06.006.

    Article  CAS  PubMed  Google Scholar 

  52. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16:53–61.

    Article  CAS  PubMed  Google Scholar 

  53. Ubrich N, Schmidt C, Bodmeier R, Hoffman M, Maincent P. Oral evaluation in rabbits of cyclosporin-loaded Eudragit RS or RL nanoparticles. Int J Pharm. 2005;288:169–75.

    Article  CAS  PubMed  Google Scholar 

  54. Vaquettea C, Babak VG, Baros F, Boulanouar O, Dumas D, Fievet P, et al. Zeta-potential and morphology of electrospun nano- and microfibers from biopolymers and their blends used as scaffolds in tissue engineering. Mendeleev Commun. 2008;18:38–41.

    Article  Google Scholar 

  55. Valenze G, Veihelamann S, Peplies J, Tichy D, Roldan-Pareja MC, Schlagenhaul U, et al. Microbial changes in periodontitis successfully treated by mechanical plaque removal and systemic amoxicillin and metronidazole. Int J Med Microbiol. 2009;299:427–38.

    Article  Google Scholar 

  56. Vitt A, Sofrata A, Slizen V, Sugars RV, Gustafsson A, Gudkova EI, et al. Antimicrobial activity of polyhexamethylene guanidine phosphate in comparison to chlorhexidine using the quantitative suspension method. Ann Clin Microbiol Antimicrob. 2015;14:36. doi:10.1186/s12941-015-0097-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yue IC, Poff J, Cortés ME, Sinisterra RD, Faris CB, Hildgen P, et al. A novel polymeric chlorhexidine delivery device for the treatment of periodontal disease. Biomaterials. 2004;25:3743–50.

    Article  CAS  PubMed  Google Scholar 

  58. Contardo MS, Díaz N, Lobos O, Padilla C, Giacaman RA. Oral colonization by Streptococcus mutans and its association with the severity of periodontal disease in adults. Rev Clin Periodoncia Implantol Rehabil Oral. 2011;4:9–12.

    Article  Google Scholar 

  59. Do MP, Neut C, Delcourt E, Certo TS, Siepmann J, Siepmann F. In situ forming implants for periodontitis treatment with improved adhesive properties. Eur J Pharm Biopharm. 2014;88:342–50.

    Article  CAS  PubMed  Google Scholar 

  60. Seymour RA, Heasman PA. Pharmacological control of periodontal disease. II. Antimicrobial agents. J Dent. 1995;23:5–14.

    Article  CAS  PubMed  Google Scholar 

  61. Amel Y, Bouziane D, Leila M, Ahmed B. Microbiological study of periodontitis in the West of Algeria. West J Med Sci. 2010;5:7–12.

    Google Scholar 

  62. Phaechamud T, Mahadlek J, Charoenteeraboon J, Choopun S. Analysis for texture and topography of doxycycline hyclate thermosensitive systems comprising zinc oxide. Indian J Pharm Sci. 2013;75(4):385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Phaechamud T, Mahadlek J, Charoenteeraboon J, Choopun S. Characterization and antimicrobial activity of N-methyl-2-pyrrolidone-loaded ethylene oxide-propylene oxide block copolymer thermosensitive gel. Indian J Pharm Sci. 2013;74(6):498–504.

    Article  Google Scholar 

  64. Seymour RA, Heasman PA. Tetracyclines in the management of periodontal diseases. A review. J Clin Periodontal. 1995;22(1):22–35.

    Article  CAS  Google Scholar 

  65. Rizzo A, Paolillo R, Guida L, Annunziata M, Bevilacqua N, Tufano MA. Effect of metronidazole and modulation of cytokine production on human periodontal ligament cells. Int Immunol Pharmacol. 2010;10(7):744–50.

    CAS  Google Scholar 

  66. Reznikov M, Hakendorf PH, Matthews DB. Response of a ‘susceptible’ Escherichia coli to metronidazole therapy: an investigation using experimental subcutaneous abscesses. Chemotherapy. 1985;31(1):50–4.

    Article  CAS  PubMed  Google Scholar 

  67. Burkhart CG, Burkhart CN, Isham N. Synergistic antimicrobial activity by combining an allylamine with benzoyl peroxide with expanded coverage against yeast and bacterial species. Br J Dermatol. 2006;154:341–4.

    Article  CAS  PubMed  Google Scholar 

  68. Chellquist EM, Gorman WG. Benzoyl peroxide solubility and stability in hydric solvents. Pharm Res. 1992;9(10):1341–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research work was supported by the Research and Development Institute, Silpakorn University (grant no. SURDI 57/01/42). We would like to thank Juree Charoenteeraboon for her comment and help. This research work was also facilitated by the Faculty of Pharmacy, Silpakorn University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thawatchai Phaechamud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phaechamud, T., Jantadee, T., Mahadlek, J. et al. Characterization of Antimicrobial Agent Loaded Eudragit RS Solvent Exchange-Induced In Situ Forming Gels for Periodontitis Treatment. AAPS PharmSciTech 18, 494–508 (2017). https://doi.org/10.1208/s12249-016-0534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0534-y

KEY WORDS

Navigation