Skip to main content

Advertisement

Log in

Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

An in situ forming gel is a dosage form which is promised for site-specific therapy such as periodontal pocket of periodontitis treatment. Ethylcellulose, bleached shellac, and Eudragit RS were applied in this study as a polymeric matrix for in situ forming gel employing N-methyl pyrrolidone (NMP) as solvent. Solutions comprising ethylcellulose, bleached shellac, and Eudragit RS in NMP were evaluated for viscosity, rheology, and rate of water penetration. Ease of administration by injection was determined as the force required to expel polymeric solutions through a needle using texture analyzer. In vitro gel formation and in vitro gel degradation were conducted after injection into phosphate buffer solution pH 6.8. Ethylcellulose, bleached shellac, and Eudragit RS could form the in situ gel, in vitro. Gel viscosity and pH value depended on percentage amount of the polymer, whereas the water diffusion at early period likely relied on types of polymer. Furthermore, the solutions containing higher polymer concentration exhibited the lower degree of degradation. All the preparations were acceptable as injectable dosage forms because the applied force was lower than 50 N. All of them inhibited Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans, and Porphyrommonas gingivalis growth owing to antimicrobial activity of NMP which exhibited a potential use for periodontitis treatment. Moreover, the developed systems presented as the solvent exchange induced in situ forming gel and showed capability to be incorporated with the suitable antimicrobial active compounds for periodontitis treatment which should be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Ji QX, Zhao QS, Deng J, Lü R. A novel injectable chlorhexidine thermosensitive hydrogel for periodontal application: preparation, antibacterial activity and toxicity evaluation. J Mater Sci Mater Med. 2010;21:2435–42.

    Article  CAS  PubMed  Google Scholar 

  2. Tekce M, Ince G, Gursoy H, Ipci SD, Cakar G, Kadir T, et al. Clinical and microbiological effects of probiotic lozenges in the treatment of chronic periodontitis: a 1-year follow-up study. J Clin Periodontol. 2015;42:363–72.

    Article  PubMed  Google Scholar 

  3. Jigar V, Tejas G, Vishal G. A review on novel in situ polymeric drug delivery system. Int J Pharm Res Dev. 2011;3:53–9.

    Google Scholar 

  4. Do MP, Neut C, Delcourt E, Certo TS, Siepmann J, Siepmann F. In situ forming implants for periodontitis treatment with improved adhesive properties. Eur J Pharm Biopharm. 2014;88:342–50.

    Article  CAS  PubMed  Google Scholar 

  5. Dunn RL, English P, Cowsar DR, Vanderbilt P, Biodegradable in-situ forming implants and methods of producing the same. 1990, US5990194 A.

  6. Xin C, Lihong W, Qiuyuan L, Hongzhuo L. Injectable long-term control-released in situ gels of hydrochloric thiothixene for the treatment of schizophrenia: preparation, in vitro and in vivo evaluation. Int J Pharm. 2014;469:23–30.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson LR, Stoller NH. Rationale for the use of Atridox therapy for managing periodontal patients. Compend Contin Educ Dent. 1999;20:19–25.

    CAS  PubMed  Google Scholar 

  8. Jouyban A, Fakhree MA, Shayanfar A. Review of pharmaceutical applications of N-methyl-2-pyrrolidone. J Pharm Pharm Sci. 2010;13:524–35.

    Article  CAS  PubMed  Google Scholar 

  9. Liu H, Venkatraman SS. Cosolvent effects on the drug release and depot swelling in injectable in situ depot-forming systems. J Pharm Sci. 2012;101:1783–93.

    Article  CAS  PubMed  Google Scholar 

  10. Sanghvi R, Narazaki R, Machatha SG, Yalkowsky SH. Solubility improvement of drugs using N-methyl pyrrolidone. AAPS PharmSciTech. 2008;9:366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Engelhardt G, Fleig H. Methyl-2-pyrrolidinone (NMP) does not induce structural and numerical chromosomal aberrations in vivo. Mutat Res-Genet Toxicol. 1993;298:149–55.

    Article  CAS  Google Scholar 

  12. Heidari MR. Reference module in biomedical sciences, from encyclopedia of toxicology 3rd ed, 2014. pp. 588–593.

  13. Liu Q, Zhang H, Zhou G, Xie S, Zou H, Yu Y, et al. In vitro and in vivo study of thymosin alpha1 biodegradable in situ forming poly(lactide-co-glycolide) implants. Int J Pharm. 2010;2010:122–9.

    Article  Google Scholar 

  14. Buchbauer G, Jirovetz L, Wasicky M, Nikoforov A. Headspace constituents of shellac. Zeitschr Naturforsch. 1993;48:247–8.

    Google Scholar 

  15. Irimia-Vladu M, Głowacki ED, Schwabegger G, Leonat L, Akpinar HZ, Sitter H, et al. Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors. Green Chem. 2013;15:1473–6.

    Article  CAS  Google Scholar 

  16. Farag Y, Leopold CS. Development of shellac-coated sustained release pellet formulation. Eur J Pharm Sci. 2011;42:400–5.

    Article  CAS  PubMed  Google Scholar 

  17. Okamoto MY, Ibanez PS. Final report on the safety assessment of shellac. J Am Coll Toxicol. 1986;5:309–27.

    Google Scholar 

  18. Hoang-Dao B-T, Hoang-Tu H, Tran-Hung L, Camps J, Koubi G, About I. Evaluation of a natural resin-based new material (Shellac F) as a potential desensitizing agent. Dent Mater. 2008;24:1001–7.

    Article  CAS  PubMed  Google Scholar 

  19. Goswami K, Khurana G, Marwaha RK, Gupta M. Development and evaluation of extended release ethylcellulose based matrix tablet of diclofenac sodium. Int J Pharm Pharm Sci. 2014;6:296–301.

    Google Scholar 

  20. Barat R, Srinatha A, Pandit JK, Mittal N, Anupurba S. Ethylcellulose inserts of an orphan drug for periodontitis: preparation, in vitro, and clinical studies. Drug Deliv. 2007;14:531–8.

    Article  CAS  PubMed  Google Scholar 

  21. Parthasarathy V, Manavalan R, Mythili R, Siby CT, Jeya M. Ethyl cellulose and polyethylene glycol-based sustained-release sparfloxacin chip: an alternative therapy for advanced periodontitis. Drug Dev Ind Pharm. 2002;28:849–62.

    Article  CAS  PubMed  Google Scholar 

  22. Phaechamud T, Mahadlek J. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs. Int J Pharm. 2015;494:381–92.

    Article  CAS  PubMed  Google Scholar 

  23. Rowe RC, Sheskey PJ, Quinn EM. Handbook of pharmaceutical excipients. The sixth ed. Washington: Pharmaceutical Press and American Pharmaceutical Association; 2009.

    Google Scholar 

  24. Qiaoa M, Luo Y, Zhang L, Ma Y, Stephenson TS, Zhu J. Sustained release coating of tablets with Eudragit® RS/RL using a novel electrostatic dry powder coating process. Int J Pharm. 2010;399:37–43.

    Article  Google Scholar 

  25. Patel RR, Patel JK. Development and evaluation of in situ novel intragastric controlled-release formulation of hydrochlorothiazide. Acta Pharm. 2011;61:73–82.

    Article  CAS  PubMed  Google Scholar 

  26. Addy M, Langeroudi M. Comparison of the immediate effects on the sub-gingival microflora of acrylic strips containing 40% chlorhexidine, metronidazole or tetracycline. J Clin Periodontol. 1984;11:379–86.

    Article  CAS  PubMed  Google Scholar 

  27. Addy M, Hassan H, Moran J, Wade W, Newcombe R. Use of antimicrobial containing acrylic strips in the treatment of chronic periodontal disease. A three month follow-up study. J Periodontol. 1988;59:557–64.

    Article  CAS  PubMed  Google Scholar 

  28. Higashi K, Matsushita M, Morisaki K, Hayashi SI, Mayumi T. Local drug delivery systems for the treatment of periodontal disease. J Pharmacobiodyn. 1991;14:72–81.

    Article  CAS  PubMed  Google Scholar 

  29. Martin A. Physical pharmacy. Philadelphia: PA: Lea and Febiger; 1993.

    Google Scholar 

  30. Kelly HM, Deasy PB, Ziaka E, Claffey N. Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. Int J Pharm. 2004;274:67–83.

    Article  Google Scholar 

  31. Esposito E, Carotta V, Scabbia A, Trombelli L, Antona PD. Comparative analysis of tetracycline-containing dental gels: poloxamer and monoglyceride-based formulations. Int J Pharm. 1996;142:9–23.

    Article  CAS  Google Scholar 

  32. Cavalcanti AL, Ramos IA, Leite RB, Oliveira MC, Menezes KM, Fernandes LV, et al. Endogenous pH, titratable acidity and total soluble solid content of mouthwashes available in the Brazilian market. Eur J Dent. 2010;4:156–9.

    PubMed  PubMed Central  Google Scholar 

  33. Sutherland K, del Río JC. Characterisation and discrimination of various types of lac resin using gas chromatography mass spectrometry techniques with quaternary ammonium reagents. J Chromatogr A. 2014;1338:149–63.

    Article  CAS  PubMed  Google Scholar 

  34. Limmatvapirat S, Limmatvapirat C, Puttipipatkhachorn S, Nuntanid J, Luangtana-Anan M. Enhanced enteric properties and stability of shellac films through composite salts formation. Eur J Pharm Biopharm. 2007;67:690–8.

    Article  CAS  PubMed  Google Scholar 

  35. Wagh VD, Deshmukh KH, Wagh KV. Formulation and evaluation of in situ gel drug delivery system of Sesbania grandiflora flower extract for the treatment of bacterial conjunctivitis. J Pharm Sci Res. 2012;4:1880–4.

    CAS  Google Scholar 

  36. Rocha C, Teixeira JA, Hilliou L, Sampaio P, Gonçalves M. Rheological and structural characterization of gels from whey protein hydrolysates/locust bean gum mixed systems. Food Hydrocoll. 2009;23:1734–45.

    Article  CAS  Google Scholar 

  37. Rungseevijitprapa W, Bodmeier R. Injectability of biodegradable in situ forming microparticle systems (ISM). Eur J Pharm Sci. 2009;36:524–31.

    Article  CAS  PubMed  Google Scholar 

  38. Philippot P, Lenoir N, D’Hoore W, Bercy P. Improving patients’ compliance with the treatment of periodontitis: a controlled study of behavioural intervention. J Clin Periodontol. 2005;32:653–8.

    Article  PubMed  Google Scholar 

  39. Gokulanathan S, Balan N, Aravind RJ, Thangavelu K. Patient compliance and supportive periodontal therapy: study among young adults of Namakkal district. J Pharm Bioallied Sci. 2014;6:S171–3.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yamamoto S, Saeki T, Inoshita T. Drying of gelled sugar solutions-water diffusion behavior. Chem Eng J. 2002;86:179–84.

    Article  CAS  Google Scholar 

  41. Gunasekaran S. Whey protein hydrogels and nanoparticles for encapsulation and controlled delivery of bioactive compounds. In: Onwulata CI, Huth PJ, editors. Whey processing, functionality and health benefits. Ames: Wiley; 2008.

    Google Scholar 

  42. Sánchez-Lafuente C, Rabasco AM, Álvarez-Fuentes J, Fernández-Arévalo M. Eudragit® RS-PM and Ethocel® 100 Premium: influence over the behavior of didanosine inert matrix system. Il Farmaco. 2002;57:649–56.

    Article  PubMed  Google Scholar 

  43. Phaechamud T, Mahadlek J, Charoenteeraboon J, Choopun S. Analysis for texture and topography of doxycycline hyclate thermosensitive systems comprising zinc oxide. Indian J Pharm Sci. 2013;75:385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Phaechamud T, Mahadlek J, Charoenteeraboon J, Choopun S. Characterization and antimicrobial activity of N-methyl-2-pyrrolidone-loaded ethylene oxide-propylene oxide block copolymer thermosensitive gel. Indian J Pharm Sci. 2013;74:498–504.

    Article  Google Scholar 

  45. Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21:201–30.

    Article  CAS  PubMed  Google Scholar 

  46. Saw CL, Olivo M, Wohland T, Fu CY, Kho KW, Soo KC, et al. Effects of N-methyl pyrrolidone on the uptake of hypericin in human bladder carcinoma and co-staining with DAPI investigated by confocal microscopy. Technol Cancer Res Treat. 2007;6:383–94.

    Article  PubMed  Google Scholar 

  47. Seyedlar RM, Nodehi A, Atai M, Imani M. Gelation behavior of in situ forming gels based on HPMC and biphasic calcium phosphate nanoparticles. Carbohydr Polym. 2014;99:257–63.

    Article  Google Scholar 

  48. Hansen CM, Just L. Prediction of environmental stress cracking in plastics with Hansen solubility. Ind Eng Chem Res. 2001;40:21–5.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research work was grateful for the Research and Development Institute, Silpakorn University (Grant No. SURDI 57/01/42). This research work was also facilitated by the Faculty of Pharmacy, Silpakorn University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thawatchai Phaechamud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srichan, T., Phaechamud, T. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment. AAPS PharmSciTech 18, 194–201 (2017). https://doi.org/10.1208/s12249-016-0507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0507-1

KEY WORDS

Navigation