Skip to main content
Log in

Cross-Reactive Polyclonal Antibodies Raised Against GalNAc-Conjugated siRNA Recognize Mostly the GalNAc Moiety

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Small interfering RNA (siRNA) is gaining momentum as a therapeutic modality with six approved products. Since siRNA has the potential to elicit undesired immune responses in patients, immunogenicity assessment is required during clinical development by regulatory authorities. In this study, anti-siRNA polyclonal antibodies were generated through animal immunization. These cross-reactive polyclonal antibodies recognized mostly the N-acetylgalactosamine (GalNAc) moiety with a small fraction against sequence-independent epitopes. We demonstrate that the polyclonal antibodies can be utilized as immunogenicity assay positive controls for the same class of GalNAc-conjugated siRNAs. In addition, anti-GalNAc mAbs showed desired sensitivity and drug tolerance, supporting their use as alternative surrogate positive controls. These findings can guide positive control selection and immunogenicity assay development for GalNAc-conjugated siRNAs and other oligonucleotide therapeutics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams D, Tournev IL, Taylor MS, Coelho T, Plante-Bordeneuve V, Berk JL, et al. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid. 2023;30(1):1–9.

    Article  PubMed  Google Scholar 

  2. Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  3. Balwani M, Sardh E, Ventura P, Peiro PA, Rees DC, Stolzel U, et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med. 2020;382(24):2289–301.

    Article  CAS  PubMed  Google Scholar 

  4. Garrelfs SF, Frishberg Y, Hulton SA, Koren MJ, O’Riordan WD, Cochat P, et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N Engl J Med. 2021;384(13):1216–26.

    Article  CAS  PubMed  Google Scholar 

  5. Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382(16):1507–19.

    Article  CAS  PubMed  Google Scholar 

  6. Setten RL, Rossi JJ, Han S-p. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discovery. 2019;18(6):421–46.

  7. Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang XJ. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5(1):101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Springer AD, Dowdy SF. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther. 2018;28(3):109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang Y. Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics. Mol Ther Nucleic Acids. 2017;6:116–32.

    Article  CAS  PubMed  Google Scholar 

  11. Bishani A, Chernolovskaya EL. Activation of innate immunity by therapeutic nucleic acids. Int J Mol Sci. 2021;22(24).

  12. Bano N, Ehlinger C, Yang TY, Swanson M, Allen S. Considerations in the immunogenicity assessment strategy for oligonucleotide therapeutics (ONTs). AAPS J. 2022;24(5):93.

    Article  CAS  PubMed  Google Scholar 

  13. Henry SP, Arfvidsson C, Arrington J, Canadi J, Crowe D, Gupta S, et al. Assessment of the immunogenicity potential for oligonucleotide-based drugs. Nucleic Acid Ther. 2022;32:369–77.

    Article  CAS  PubMed  Google Scholar 

  14. Landmesser U, Haghikia A, Leiter LA, Wright RS, Kallend D, Wijngaard P, et al. Effect of inclisiran, the small-interfering RNA against proprotein convertase subtilisin/kexin type 9, on platelets, immune cells, and immunological biomarkers: a pre-specified analysis from ORION-1. Cardiovasc Res. 2021;117(1):284–91.

    Article  CAS  PubMed  Google Scholar 

  15. Agarwal S, Simon AR, Goel V, Habtemariam BA, Clausen VA, Kim JB, Robbie GJ. Pharmacokinetics and pharmacodynamics of the small interfering ribonucleic acid, givosiran, in patients with acute hepatic porphyria. Clin Pharmacol Ther. 2020;108(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  16. FDA. Draft guidance for industry: clinical pharmacology considerations for the development of oligonucleotide therapeutics. 2022. Available at https://www.fda.gov/media/159414/download. Accessed on 22 Sept 2023.

  17. Peek VL, Lemen DM, Konrad RJ, Wen Y. A competitive ligand binding assay for detection of neutralizing antibodies against an insulin analog. J Immunol Methods. 2023;523: 113575.

    Article  CAS  PubMed  Google Scholar 

  18. Simmons E, Wen Y, Li J, Qian YW, Wong LC, Konrad RJ, Bivi N. A sensitive and drug tolerant assay for detecting anti-AAV9 antibodies using affinity capture elution. J Immunol Methods. 2023;512: 113397.

    Article  CAS  PubMed  Google Scholar 

  19. Bivi N, Swearingen CA, Shockley TE, Sloan JH, Pottanat TG, Carter QL, et al. Development and validation of a novel immunogenicity assay to detect anti-drug and anti-PEG antibodies simultaneously with high sensitivity. J Immunol Methods. 2020;486: 112856.

    Article  CAS  PubMed  Google Scholar 

  20. Bourdage JS, Cook CA, Farrington DL, Chain JS, Konrad RJ. An Affinity Capture Elution (ACE) assay for detection of anti-drug antibody to monoclonal antibody therapeutics in the presence of high levels of drug. J Immunol Methods. 2007;327(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  21. McGowan MP, Tardif JC, Ceska R, Burgess LJ, Soran H, Gouni-Berthold I, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS ONE. 2012;7(11): e49006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu RZ, Wang Y, Norris DA, Kim TW, Narayanan P, Geary RS, et al. Immunogenicity assessment of inotersen, a 2′-O-(2-methoxyethyl) antisense oligonucleotide in animals and humans: effect on pharmacokinetics, pharmacodynamics, and safety. Nucleic Acid Ther. 2020;30(5):265–75.

    Article  CAS  PubMed  Google Scholar 

  23. Lofgren JA, Dhandapani S, Pennucci JJ, Abbott CM, Mytych DT, Kaliyaperumal A, et al. Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab. J Immunol. 2007;178(11):7467–72.

    Article  CAS  PubMed  Google Scholar 

  24. Li J, Schantz A, Schwegler M, Shankar G. Detection of low-affinity anti-drug antibodies and improved drug tolerance in immunogenicity testing by Octet((R)) biolayer interferometry. J Pharm Biomed Anal. 2011;54(2):286–94.

    Article  CAS  PubMed  Google Scholar 

  25. Wadhwa M, Knezevic I, Kang HN, Thorpe R. Immunogenicity assessment of biotherapeutic products: an overview of assays and their utility. Biologicals. 2015;43(5):298–306.

    Article  CAS  PubMed  Google Scholar 

  26. Myler H, Pedras-Vasconcelos J, Phillips K, Hottenstein CS, Chamberlain P, Devanaryan V, et al. Anti-drug antibody validation testing and reporting harmonization. AAPS J. 2021;24(1):4.

    Article  PubMed  Google Scholar 

  27. Brown BD. Progress on nedosiran (DCR-PHXC) development to treat primary hyperoxaluria. AsiaTIDES: Kyoto, Japan; 2020.

    Google Scholar 

  28. Dean L. ABO Blood Group. In: Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kattman BL, Malheiro AJ, editors. Medical Genetics Summaries. Bethesda (MD): National Center for Biotechnology Information (US); 2012.

Download references

Acknowledgements

The authors would like to thank Drs. Martin McGrath and Nicoletta Bivi for their help and discussion on reagent generation. The authors would like to thank Drs. Kelly Hainline, Yuewei Qian, and Robert Siegel for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K. B. and Y. W. designed the study. K. B., V. P., J. S., and J. L. performed the experiments and generated the data or reagents. K. B. and Y. W. analyzed the data. R. K. provided supervision and edited the manuscript. Y. W. supervised the study and wrote the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Yi Wen.

Ethics declarations

Conflict of Interest

All authors are employees of Eli Lilly and Company and own company stocks.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 130 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballman, K.K., Peek, V.L., Sloan, J.H. et al. Cross-Reactive Polyclonal Antibodies Raised Against GalNAc-Conjugated siRNA Recognize Mostly the GalNAc Moiety. AAPS J 26, 41 (2024). https://doi.org/10.1208/s12248-024-00914-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-024-00914-w

Keywords

Navigation