Skip to main content

Advertisement

Log in

Simulation of Intraluminal Performance of Lipophilic Weak Bases in Fasted Healthy Adults Using DDDPlusTM

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The majority of drug candidates exhibit weakly basic characteristics with high lipophilicity. The risk of intraluminal compound precipitation has been studied in vivo and extensively in vitro using advanced dissolution transfer setups mimicking drug transfer from the stomach to the small intestine. The present investigation aims to evaluate the usefulness of the recently introduced Artificial Stomach-Duodenum in silico tool in the DDDPlusTM platform (ASD-D+) to simulate intraluminal drug behavior. The weakly basic drugs ketoconazole and dipyridamole were used as model drugs within the ASD-D+ model at two dose levels. The simulated amounts per volume were compared to intraluminal data collected from fasted healthy adults. Four different in silico transfer models running on a continuous or a stepwise mode were utilized for the simulations. Each transfer model exhibited different capabilities to simulate observed intraluminal drug presence. Three out of the four in silico models overestimated the total drug amount measured in vivo (dissolved and precipitated drug), while only two of the four models matched the intraluminal drug concentrations. The stepwise model enabled adequate simulations of both drug concentration and total drug amount. The present investigation highlighted the importance of simulating drug transfer appropriately within the applied methodology prior to estimating precipitation kinetics. As a future step, optimization of ASD-D+ model would enable evaluations of solid/semi-solid dosage form simulations. Lastly, prediction of drug precipitation kinetics following simulation of gastrointestinal transfer may provide mechanistic understanding of drug absorption and appropriate justification of drug-formulated parameters within physiologically based pharmacokinetic models.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amidon GL, Lennernäs H, Shah VP, Crison JR. A Theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

  2. Ku MS. Use of the biopharmaceutical classification system in early drug development. AAPS J. 2008;10(1):208–12.

    Article  CAS  Google Scholar 

  3. Vertzoni M, Augustijns P, Grimm M, Koziolek M, Lemmens G, Parrott N, et al. Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: an UNGAP review. Eur J Pharm Sci. 2019;134:153–75.

    Article  CAS  Google Scholar 

  4. Braeckmans M, Brouwers J, Masuy I, Servais C, Tack J, Augustijns P. The influence of gastric motility on the intraluminal behavior of fosamprenavir. Eur J Pharm Sci. 2020;142:105117.

    Article  CAS  Google Scholar 

  5. Geboers S, Stappaerts J, Mols R, Snoeys J, Tack J, Annaert P, et al. The effect of food on the intraluminal behavior of abiraterone acetate in man. J Pharm Sci. 2016;105(9):2974–81.

    Article  CAS  Google Scholar 

  6. Psachoulias D, Vertzoni M, Goumas K, Kalioras V, Beato S, Butler J, et al. Precipitation in and supersaturation of contents of the upper small intestine after administration of two weak bases to fasted adults. Pharm Res. 2011;28(12):3145–58.

    Article  CAS  Google Scholar 

  7. Van Den Abeele J, Brouwers J, Tack J, Augustijns P. Exploring the link between gastric motility and intragastric drug distribution in man. Eur J Pharm Biopharm. 2017;112:75–84.

    Article  Google Scholar 

  8. Van Den Abeele J, Brouwers J, Mattheus R, Tack J, Augustijns P. Gastrointestinal behavior of weakly acidic BCS class II drugs in man - case study of diclofenac potassium. J Pharm Sci. 2016;105(2):687–96.

    Article  Google Scholar 

  9. Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, et al. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57(1):300–21.

    Article  CAS  Google Scholar 

  10. Butler J, Hens B, Vertzoni M, Brouwers J, Berben P, Dressman J, et al. In vitro models for the prediction of in vivo performance of oral dosage forms: recent progress from partnership through the IMI OrBiTo collaboration. Eur J Pharm Biopharm. 2019;136:70–83.

    Article  CAS  Google Scholar 

  11. O’Dwyer PJ, Litou C, Box KJ, Dressman JB, Kostewicz ES, Kuentz M, et al. In vitro methods to assess drug precipitation in the fasted small intestine – a PEARRL review. J Pharm Pharmacol. 2018;71(4):536–56.

    Article  Google Scholar 

  12. Sjögren E, Abrahamsson B, Augustijns P, Becker D, Bolger MB, Brewster M, et al. In vivo methods for drug absorption - comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci. 2014;57:99–151.

  13. Wilson CG, Aarons L, Augustijns P, Brouwers J, Darwich AS, De Waal T, et al. Integration of advanced methods and models to study drug absorption and related processes: An UNGAP perspective. Eur J Pharm Sci. 2022;172:106100.

    Article  CAS  Google Scholar 

  14. Kostewicz ES, Wunderlich M, Brauns U, Becker R, Bock T, Dressman JB. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol. 2010;56(1):43–51.

    Article  Google Scholar 

  15. Carino SR, Sperry DC, Hawley M. Relative bioavailability of three different solid forms of PNU-141659 as determined with the artificial stomach-duodenum model. J Pharm Sci. 2010;99(9):3923–30.

    Article  CAS  Google Scholar 

  16. Matsui K, Tsume Y, Takeuchi S, Searls A, Amidon GL. Utilization of gastrointestinal simulator, an in vivo predictive dissolution methodology, coupled with computational approach to forecast oral absorption of dipyridamole. Mol Pharm. 2017;14(4):1181–9.

    Article  CAS  Google Scholar 

  17. Tsume Y, Amidon GL, Takeuchi S. Dissolution effect of gastric and intestinal pH fora BCS class II drug, pioglitazone: new in vitro dissolution system to predict in vivo dissolution. J Bioequivalence Bioavailab. 2013;5(6):224–7.

    Google Scholar 

  18. Kourentas A, Vertzoni M, Stavrinoudakis N, Symillidis A, Brouwers J, Augustijns P, et al. An in vitro biorelevant gastrointestinal transfer (BioGIT) system for forecasting concentrations in the fasted upper small intestine: design, implementation, and evaluation. Eur J Pharm Sci. 2016;82:106–14.

    Article  CAS  Google Scholar 

  19. Kourentas A, Vertzoni M, Symillides M, Hens B, Brouwers J, Augustijns P, et al. In vitro evaluation of the impact of gastrointestinal transfer on luminal performance of commercially available products of posaconazole and itraconazole using BioGIT. Int J Pharm. 2016;515(1–2):352–8.

    Article  CAS  Google Scholar 

  20. Kourentas A, Vertzoni M, Barmpatsalou V, Augustijns P, Beato S, Butler J, et al. The BioGIT system: a valuable in vitro tool to assess the impact of dose and formulation on early exposure to low solubility drugs after oral administration. AAPS J. 2018;20(4):1–12.

    Article  CAS  Google Scholar 

  21. Kesisoglou F, Vertzoni M, Reppas C. Physiologically based absorption modeling of salts of weak bases based on data in hypochlorhydric and achlorhydric biorelevant media. AAPS PharmSciTech. 2018;19(7):2851–8.

    Article  CAS  Google Scholar 

  22. SimulationsPlus Inc. DDDPlus V6 Manual; 2018. p. 1–226.

    Google Scholar 

  23. Pathak SM, Schaefer KJ, Jamei M, Turner DB. Biopharmaceutic IVIVE—mechanistic modeling of single- and two-phase in vitro experiments to obtain drug-specific parameters for incorporation into PBPK models. J Pharm Sci. 2019;108(4):1604–18.

    Article  CAS  Google Scholar 

  24. Pathak SM, Ruff A, Kostewicz ES, Patel N, Turner DB, Jamei M. Model-based analysis of biopharmaceutic experiments to improve mechanistic oral absorption modeling: an integrated in vitro in vivo extrapolation perspective using ketoconazole as a model drug. Mol Pharm. 2017;14(12):4305–20.

    Article  CAS  Google Scholar 

  25. Ruff A, Fiolka T, Kostewicz ES. Prediction of ketoconazole absorption using an updated in vitro transfer model coupled to physiologically based pharmacokinetic modelling. Eur J Pharm Sci. 2017;100:42–55.

    Article  CAS  Google Scholar 

  26. Dollery CI. Therapeutic Drugs: Churchill Livingstone; 1999. (Therapeutic Drugs)

    Google Scholar 

  27. Fagerberg JH, Tsinman O, Sun N, Tsinman K, Avdeef A, Bergström CAS. Dissolution rate and apparent solubility of poorly soluble drugs in biorelevant dissolution media. Mol Pharm. 2010;7(5):1419–30.

    Article  CAS  Google Scholar 

  28. Mithani SD, Bakatselou V, TenHoor CN, Dressman JB. Estimation of the increasi in solubility of drugs as function of bile salt concentration. Pharm Res. 1995;13(1):163–7.

    Article  Google Scholar 

  29. Markopoulos C, Andreas CJ, Vertzoni M, Dressman J, Reppas C. In-vitro simulation of luminal conditions for evaluation of performance of oral drug products: choosing the appropriate test media. Eur J Pharm Biopharm. 2015;93:173–82.

    Article  CAS  Google Scholar 

  30. Tsume Y, Langguth P, Garcia-Arieta A, Amidon GL. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: in silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen a. Biopharm Drug Dispos. 2012;33:366–77.

    Article  CAS  Google Scholar 

  31. Litou C, Vertzoni M, Goumas C, Vasdekis V, Xu W, Kesisoglou F, et al. Characteristics of the human upper gastrointestinal contents in the fasted state under hypo- and a-chlorhydric gastric conditions under conditions of typical drug – drug interaction studies. Pharm Res. 2016;33(6):1399–412.

    Article  CAS  Google Scholar 

  32. Riethorst D, Mols R, Duchateau G, Tack J, Brouwers J, Augustijns P. Characterization of human duodenal fluids in fasted and fed state conditions. J Pharm Sci. 2016;105(2):673–81.

    Article  CAS  Google Scholar 

  33. Vinarov Z, Abdallah M, Agundez JAG, Allegaert K, Basit AW, Braeckmans M, et al. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2021 Jul;162:105812.

    CAS  Google Scholar 

  34. Hens B, Masuy I, Deloose E, Mols R, Tack J, Augustijns P. Exploring the impact of real-life dosing conditions on intraluminal and systemic concentrations of atazanavir in parallel with gastric motility recording in healthy subjects. Eur J Pharm Biopharm. 2020;150:66–76.

    Article  CAS  Google Scholar 

  35. Walravens J, Brouwers J, Spriet I, Tack J, Annaert P, Augustijns P. Effect of pH and comedication on gastrointestinal absorption of posaconazole. Clin Pharmacokinet. 2011;50(11):725–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the experimental design and data analysis.

Corresponding author

Correspondence to Alexandros Kourentas.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 563 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Statelova, M., Vertzoni, M. & Kourentas, A. Simulation of Intraluminal Performance of Lipophilic Weak Bases in Fasted Healthy Adults Using DDDPlusTM. AAPS J 24, 89 (2022). https://doi.org/10.1208/s12248-022-00737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-022-00737-7

Keywords

Navigation