Skip to main content

Advertisement

Log in

Development of In Vitro Dissolution Testing Methods to Simulate Fed Conditions for Immediate Release Solid Oral Dosage Forms

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In vitro dissolution testing is widely used to mimic and predict in vivo performance of oral drug products in the gastrointestinal (GI) tract. This literature review assesses the current in vitro dissolution methodologies being employed to simulate and predict in vivo drug dissolution under fasted and fed conditions, with emphasis on immediate release (IR) solid oral dosage forms. Notable human GI physiological conditions under fasted and fed states have been reviewed and summarized. Literature results showed that dissolution media, mechanical forces, and transit times are key dissolution test parameters for simulating specific postprandial conditions. A number of biorelevant systems, including the fed stomach model (FSM), GastroDuo device, dynamic gastric model (DGM), simulated gastrointestinal tract models (TIM), and the human gastric simulator (HGS), have been developed to mimic the postprandial state of the stomach. While these models have assisted in expanding physiological relevance of in vitro dissolution tests, in general, these models lack the ability to fully replicate physiological conditions/processes. Furthermore, the translatability of in vitro data to an in vivo system remains challenging. Additionally, physiologically based pharmacokinetic (PBPK) modeling has been employed to evaluate the effect of food on drug bioavailability and bioequivalence. Here, we assess the current status of in vitro dissolution methodologies and absorption PBPK modeling approaches to identify knowledge gaps and facilitate further development of in vitro dissolution methods that factor in fasted and fed states. Prediction of in vivo drug performance under fasted and fed conditions via in vitro dissolution testing and modeling may potentially help efforts in harmonizing global regulatory recommendations regarding in vivo fasted and fed bioequivalence studies for solid oral IR products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. CDER. Assessing the effects of food on drugs in INDs and NDAs — clinical pharmacology considerations guidance for industry. 2019.

  2. Chen ML, Blume H, Beuerle G, Davit B, Mehta M, Potthast H, et al. The Global Bioequivalence Harmonization Initiative: summary report for EUFEPS international conference. Eur J Pharm Sci. 2018;111:153–7.

    Article  CAS  PubMed  Google Scholar 

  3. CDER. M9 Biopharmaceutics Classification System-Based Biowaivers. 2021.

  4. Malinowski H, Marroum P, Uppoor VR, Gillespie W, Ahn HY, Lockwood P, et al. Draft guidance for industry extended-release solid oral dosage forms. Development, evaluation and application of in vitro-in vivo correlations. Adv Exp Med Biol. 1997;423:269–88.

    Article  CAS  PubMed  Google Scholar 

  5. ICH. Final Concept Paper M13: Bioequivalence for immediate-release solid oral dosage forms 2020.

  6. Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010;7(5):1388–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schick P, Sager M, Wegner F, Wiedmann M, Schapperer E, Weitschies W, et al. Application of the GastroDuo as an in vitro dissolution tool to simulate the gastric emptying of the postprandial stomach. Mol Pharm. 2019;16(11):4651–60.

    Article  CAS  PubMed  Google Scholar 

  8. Koziolek M, Grimm M, Garbacz G, Kuhn JP, Weitschies W. Intragastric volume changes after intake of a high-caloric, high-fat standard breakfast in healthy human subjects investigated by MRI. Mol Pharm. 2014;11(5):1632–9.

    Article  CAS  PubMed  Google Scholar 

  9. O’Shea JP, Holm R, O’Driscoll CM, Griffin BT. Food for thought: formulating away the food effect - a PEARRL review. J Pharm Pharmacol. 2019;71(4):510–35.

    Article  PubMed  Google Scholar 

  10. Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, et al. The mechanisms of pharmacokinetic food-drug interactions - a perspective from the UNGAP group. Eur J Pharm Sci. 2019;134:31–59.

    Article  CAS  PubMed  Google Scholar 

  11. Vertzoni M, Augustijns P, Grimm M, Koziolek M, Lemmens G, Parrott N, et al. Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: an UNGAP review. Eur J Pharm Sci. 2019;134:153–75.

    Article  CAS  PubMed  Google Scholar 

  12. Schneider F, Koziolek M, Weitschies W. In vitro and in vivo test methods for the evaluation of gastroretentive dosage forms. Pharmaceutics. 2019;11(8).

  13. Koziolek M, Schneider F, Grimm M, Modebeta C, Seekamp A, Roustom T, et al. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies. J Control Release. 2015;220(Pt A):71–8.

    Article  CAS  PubMed  Google Scholar 

  14. Koziolek M, Garbacz G, Neumann M, Weitschies W. Simulating the postprandial stomach: physiological considerations for dissolution and release testing. Mol Pharm. 2013;10(5):1610–22.

    Article  CAS  PubMed  Google Scholar 

  15. Andreas CJ, Rosenberger J, Butler J, Augustijns P, McAllister M, Abrahamsson B, et al. Introduction to the OrBiTo decision tree to select the most appropriate in vitro methodology for release testing of solid oral dosage forms during development. Eur J Pharm Biopharm. 2018;130:207–13.

    Article  CAS  PubMed  Google Scholar 

  16. Effinger A, McAllister M, Tomaszewska I, O’Driscoll CM, Taylor M, Gomersall S, et al. Investigating the impact of Crohn’s disease on the bioaccessibility of a lipid-based formulation with an in vitro dynamic gastrointestinal model. Mol Pharm. 2021;18(4):1530–43.

    Article  CAS  PubMed  Google Scholar 

  17. Camilleri M. Integrated upper gastrointestinal response to food intake. Gastroenterology. 2006;131(2):640–58.

    Article  CAS  PubMed  Google Scholar 

  18. Kong F, Singh RP. Disintegration of solid foods in human stomach. J Food Sci. 2008;73(5):R67–80.

    Article  CAS  PubMed  Google Scholar 

  19. Culen M, Rezacova A, Jampilek J, Dohnal J. Designing a dynamic dissolution method: a review of instrumental options and corresponding physiology of stomach and small intestine. J Pharm Sci. 2013;102(9):2995–3017.

    Article  CAS  PubMed  Google Scholar 

  20. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res. 1990;7(7):756–61.

    Article  CAS  PubMed  Google Scholar 

  21. Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 2006;23(1):165–76.

    Article  CAS  Google Scholar 

  22. Koziolek M, Gorke K, Neumann M, Garbacz G, Weitschies W. Development of a bio-relevant dissolution test device simulating mechanical aspects present in the fed stomach. Eur J Pharm Sci. 2014;57:250–6.

    Article  CAS  PubMed  Google Scholar 

  23. Grimm M, Scholz E, Koziolek M, Kuhn JP, Weitschies W. Gastric water emptying under fed state clinical trial conditions is as fast as under fasted conditions. Mol Pharm. 2017;14(12):4262–71.

    Article  CAS  PubMed  Google Scholar 

  24. Schick P, Sager M, Voelker M, Weitschies W, Koziolek M. Application of the GastroDuo to study the interplay of drug release and gastric emptying in case of immediate release aspirin formulations. Eur J Pharm Biopharm. 2020;151:9–17.

    Article  CAS  PubMed  Google Scholar 

  25. Newton JM. Gastric emptying of multi-particulate dosage forms. Int J Pharm. 2010;395(1-2):2–8.

    Article  CAS  PubMed  Google Scholar 

  26. Kong F, Singh RP. A human gastric simulator (HGS) to study food digestion in human stomach. J Food Sci. 2010;75(9):E627–35.

    Article  CAS  PubMed  Google Scholar 

  27. Lentz KA. Current methods for predicting human food effect. AAPS J. 2008;10(2):282–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Melander A. Influence of food on the bioavailability of drugs. Clin Pharmacokinet. 1978;3(5):337–51.

    Article  CAS  PubMed  Google Scholar 

  29. Melia CD, Davis SS. Review article: mechanisms of drug release from tablets and capsules. 2. Dissolution. Aliment Pharmacol Ther. 1989;3(6):513–25.

    Article  CAS  PubMed  Google Scholar 

  30. Pedersen PB, Vilmann P, Bar-Shalom D, Mullertz A, Baldursdottir S. Characterization of fasted human gastric fluid for relevant rheological parameters and gastric lipase activities. Eur J Pharm Biopharm. 2013;85(3 Pt B):958–65.

    Article  CAS  PubMed  Google Scholar 

  31. Kurita Y, Nakazawa S, Segawa K, Tsukamoto Y. Clinical significance of gastric juice viscosity in peptic ulcer patients. Dig Dis Sci. 1988;33(9):1070–6.

    Article  CAS  PubMed  Google Scholar 

  32. Segregur D, Flanagan T, Mann J, Moir A, Karlsson EM, Hoch M, et al. Impact of acid-reducing agents on gastrointestinal physiology and design of biorelevant dissolution tests to reflect these changes. J Pharm Sci. 2019;108(11):3461–77.

    Article  CAS  PubMed  Google Scholar 

  33. Cheng L, Wong H. Food effects on oral drug absorption: application of physiologically-based pharmacokinetic modeling as a predictive tool. Pharmaceutics. 2020;12(7).

  34. Steingoetter A, Fox M, Treier R, Weishaupt D, Marincek B, Boesiger P, et al. Effects of posture on the physiology of gastric emptying: a magnetic resonance imaging study. Scand J Gastroenterol. 2006;41(10):1155–64.

    Article  PubMed  Google Scholar 

  35. Kwiatek MA, Menne D, Steingoetter A, Goetze O, Forras-Kaufman Z, Kaufman E, et al. Effect of meal volume and calorie load on postprandial gastric function and emptying: studies under physiological conditions by combined fiber-optic pressure measurement and MRI. Am J Physiol Gastrointest Liver Physiol. 2009;297(5):G894–901.

    Article  CAS  PubMed  Google Scholar 

  36. Pentafragka C, Symillides M, McAllister M, Dressman J, Vertzoni M, Reppas C. The impact of food intake on the luminal environment and performance of oral drug products with a view to in vitro and in silico simulations: a PEARRL review. J Pharm Pharmacol. 2019;71(4):557–80.

    Article  CAS  PubMed  Google Scholar 

  37. Schneider F, Grimm M, Koziolek M, Modess C, Dokter A, Roustom T, et al. Resolving the physiological conditions in bioavailability and bioequivalence studies: comparison of fasted and fed state. Eur J Pharm Biopharm. 2016;108:214–9.

    Article  CAS  PubMed  Google Scholar 

  38. Schneider F, Beeck R, Hoppe M, Koziolek M, Weitschies W. In vitro simulation of realistic gastric pressure profiles. Eur J Pharm Sci. 2017;107:71–7.

    Article  CAS  PubMed  Google Scholar 

  39. Ogobuiro I, Gonzales J, Tuma F. Physiology, gastrointestinal. Treasure Island (FL): StatPearls; 2022.

    Google Scholar 

  40. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.

    Article  CAS  PubMed  Google Scholar 

  41. Klein S, Butler J, Hempenstall JM, Reppas C, Dressman JB. Media to simulate the postprandial stomach I. Matching the physicochemical characteristics of standard breakfasts. J Pharm Pharmacol. 2004;56(5):605–10.

    Article  CAS  PubMed  Google Scholar 

  42. Klein S. The use of biorelevant dissolution media to forecast the in vivo performance of a drug. AAPS J. 2010;12(3):397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baxevanis F, Kuiper J, Fotaki N. Fed-state gastric media and drug analysis techniques: current status and points to consider. Eur J Pharm Biopharm. 2016;107:234–48.

    Article  CAS  PubMed  Google Scholar 

  44. Kato T, Nakagawa H, Mikkaichi T, Miyano T, Matsumoto Y, Ando S. Establishment of a clinically relevant specification for dissolution testing using physiologically based pharmacokinetic (PBPK) modeling approaches. Eur J Pharm Biopharm. 2020;151:45–52.

    Article  CAS  PubMed  Google Scholar 

  45. Mann J, Dressman J, Rosenblatt K, Ashworth L, Muenster U, Frank K, et al. Validation of dissolution testing with biorelevant media: an OrBiTo study. Mol Pharm. 2017;14(12):4192–201.

    Article  CAS  PubMed  Google Scholar 

  46. Kleberg K, Jacobsen J, Mullertz A. Characterising the behaviour of poorly water soluble drugs in the intestine: application of biorelevant media for solubility, dissolution and transport studies. J Pharm Pharmacol. 2010;62(11):1656–68.

    Article  CAS  PubMed  Google Scholar 

  47. Koziolek M, Kostewicz E, Vertzoni M. Physiological considerations and in vitro strategies for evaluating the influence of food on drug release from extended-release formulations. AAPS PharmSciTech. 2018;19(7):2885–97.

    Article  CAS  PubMed  Google Scholar 

  48. Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15(1):11–22.

    Article  CAS  Google Scholar 

  49. Leyden JJ. Absorption of minocycline hydrochloride and tetracycline hydrochloride. Effect of food, milk, and iron. J Am Acad Dermatol. 1985;12(2 Pt 1):308–12.

    Article  CAS  PubMed  Google Scholar 

  50. Sunesen VH, Vedelsdal R, Kristensen HG, Christrup L, Mullertz A. Effect of liquid volume and food intake on the absolute bioavailability of danazol, a poorly soluble drug. Eur J Pharm Sci. 2005;24(4):297–303.

    Article  CAS  PubMed  Google Scholar 

  51. Sheng JJ, Kasim NA, Chandrasekharan R, Amidon GL. Solubilization and dissolution of insoluble weak acid, ketoprofen: effects of pH combined with surfactant. Eur J Pharm Sci. 2006;29(3-4):306–14.

    Article  CAS  PubMed  Google Scholar 

  52. Phaechamud T, Ritthidej GC. Sustained-release from layered matrix system comprising chitosan and xanthan gum. Drug Dev Ind Pharm. 2007;33(6):595–605.

    Article  CAS  PubMed  Google Scholar 

  53. Matsumura N, Ono A, Akiyama Y, Fujita T, Sugano K. Bottom-up physiologically based oral absorption modeling of free weak base drugs. Pharmaceutics. 2020;12(9).

  54. Cristofoletti R, Patel N, Dressman JB. Differences in food effects for 2 weak bases with similar BCS drug-related properties: what is happening in the intestinal lumen? J Pharm Sci. 2016;105(9):2712–22.

    Article  CAS  PubMed  Google Scholar 

  55. Rudolph MW, Klein S, Beckert TE, Petereit H, Dressman JB. A new 5-aminosalicylic acid multi-unit dosage form for the therapy of ulcerative colitis. Eur J Pharm Biopharm. 2001;51(3):183–90.

    Article  CAS  PubMed  Google Scholar 

  56. Martir J, Flanagan T, Mann J, Fotaki N. Impact of food and drink administration vehicles on paediatric formulation performance Part 2: Dissolution of montelukast sodium and mesalazine formulations. AAPS PharmSciTech. 2020;21(7):287.

    Article  CAS  PubMed  Google Scholar 

  57. Martir J, Flanagan T, Mann J, Fotaki N. Impact of food and drink administration vehicles on paediatric formulation performance: Part 1-Effects on solubility of poorly soluble drugs. AAPS PharmSciTech. 2020;21(5):177.

    Article  CAS  PubMed  Google Scholar 

  58. Dahan ASA, G. L. . Gastrointestinal dissolution and absorption of class II drugs. van de Waterbeemd HT, B., editor. Weinheim: Wiley-VCH; 2009.

  59. Brouwers J, Tack J, Lammert F, Augustijns P. Intraluminal drug and formulation behavior and integration in in vitro permeability estimation: a case study with amprenavir. J Pharm Sci. 2006;95(2):372–83.

    Article  CAS  PubMed  Google Scholar 

  60. Clarysse S, Tack J, Lammert F, Duchateau G, Reppas C, Augustijns P. Postprandial evolution in composition and characteristics of human duodenal fluids in different nutritional states. J Pharm Sci. 2009;98(3):1177–92.

    Article  CAS  PubMed  Google Scholar 

  61. Lu Y, Tang N, Lian R, Qi J, Wu W. Understanding the relationship between wettability and dissolution of solid dispersion. Int J Pharm. 2014;465(1-2):25–31.

    Article  CAS  PubMed  Google Scholar 

  62. Lindfors L, Jonsson M, Weibull E, Brasseur JG, Abrahamsson B. Hydrodynamic effects on drug dissolution and deaggregation in the small intestine-a study with felodipine as a model drug. J Pharm Sci. 2015;104(9):2969–76.

    Article  CAS  PubMed  Google Scholar 

  63. Kindgen S, Wachtel H, Abrahamsson B, Langguth P. Computational fluid dynamics simulation of hydrodynamics and stresses in the PhEur/USP disintegration tester under fed and fasted fluid characteristics. J Pharm Sci. 2015;104(9):2956–68.

    Article  CAS  PubMed  Google Scholar 

  64. Shekunov B, Montgomery ER. Theoretical analysis of drug dissolution: I. Solubility and intrinsic dissolution rate. J Pharm Sci. 2016;105(9):2685–97.

    Article  CAS  PubMed  Google Scholar 

  65. Vardakou M, Mercuri A, Barker SA, Craig DQ, Faulks RM, Wickham MS. Achieving antral grinding forces in biorelevant in vitro models: comparing the USP dissolution apparatus II and the dynamic gastric model with human in vivo data. AAPS PharmSciTech. 2011;12(2):620–6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Burke MM, C. R.; Zimmerman, B. O., inventorPharmaceutical analysis apparatus and method 2011.

  67. Garbacz G, Wedemeyer RS, Nagel S, Giessmann T, Monnikes H, Wilson CG, et al. Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. Eur J Pharm Biopharm. 2008;70(2):421–8.

    Article  CAS  PubMed  Google Scholar 

  68. Gao Z. In vitro dissolution testing of gelatin capsules with applied mechanical compression-a technical note. AAPS PharmSciTech. 2017;18(1):231–7.

    Article  PubMed  Google Scholar 

  69. Gao Z, Ngo C, Ye W, Rodriguez JD, Keire D, Sun D, et al. Effects of dissolution medium pH and simulated gastrointestinal contraction on drug release from nifedipine extended-release tablets. J Pharm Sci. 2019;108(3):1189–94.

    Article  CAS  PubMed  Google Scholar 

  70. Higaki K, Choe SY, Lobenberg R, Welage LS, Amidon GL. Mechanistic understanding of time-dependent oral absorption based on gastric motor activity in humans. Eur J Pharm Biopharm. 2008;70(1):313–25.

    Article  CAS  PubMed  Google Scholar 

  71. Bonner JJ, Vajjah P, Abduljalil K, Jamei M, Rostami-Hodjegan A, Tucker GT, et al. Does age affect gastric emptying time? A model-based meta-analysis of data from premature neonates through to adults. Biopharm Drug Dispos. 2015;36(4):245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. USP. The United States Pharmacopeia USP 31, the National Formulary NF 26. Rockville. The United States Pharmacopeial Convention, Inc. 2008.

  73. Shohin IEG, D. Y.; Malashenko EA, Stanishevskii YM, Ramenskaya GV. A brief review of the FDA dissolution methods database. Dissolution Technologies 2016;23:6-10.

  74. Tekade RK. Dosage form design considerations: Academic Press; 2018.

    Google Scholar 

  75. Butler J, Hens B, Vertzoni M, Brouwers J, Berben P, Dressman J, et al. In vitro models for the prediction of in vivo performance of oral dosage forms: recent progress from partnership through the IMI OrBiTo collaboration. Eur J Pharm Biopharm. 2019;136:70–83.

    Article  CAS  PubMed  Google Scholar 

  76. Sager M, Schick P, Mischek M, Schulze C, Hasan M, Kromrey ML, et al. Comparison of in vitro and in vivo results using the GastroDuo and the salivary tracer technique: immediate release dosage forms under fasting conditions. Pharmaceutics. 2019;11(12).

  77. Sager M, Grimm M, Jedamzik P, Merdivan S, Kromrey ML, Hasan M, et al. Combined application of MRI and the salivary tracer technique to determine the in vivo disintegration time of immediate release formulation administered to healthy, fasted subjects. Mol Pharm. 2019;16(4):1782–6.

    Article  CAS  PubMed  Google Scholar 

  78. Sager M, Jedamzik P, Merdivan S, Grimm M, Schneider F, Kromrey ML, et al. Low dose caffeine as a salivary tracer for the determination of gastric water emptying in fed and fasted state: a MRI validation study. Eur J Pharm Biopharm. 2018;127:443–52.

    Article  CAS  PubMed  Google Scholar 

  79. Kitty Verhoeckx PC, Iván López-Expósito, Charlotte Kleiveland, Tor Lea, Alan Mackie, Teresa Requena, Dominika Swiatecka, and Harry Wichers. The impact of food bioactives on health: in vitro and ex vivo models Springer; 2015.

  80. Dupont D, Alric M, Blanquet-Diot S, Bornhorst G, Cueva C, Deglaire A, et al. Can dynamic in vitro digestion systems mimic the physiological reality? Crit Rev Food Sci Nutr. 2019;59(10):1546–62.

    Article  CAS  PubMed  Google Scholar 

  81. Wickham MJSF, R. M.; Mann, J.; Mandalari, G. The design, operation, and application of a dynamic gastric model. Dissolution Technologies. 2012:15–22.

  82. Marciani L, Gowland PA, Fillery-Travis A, Manoj P, Wright J, Smith A, et al. Assessment of antral grinding of a model solid meal with echo-planar imaging. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G844–9.

    Article  CAS  PubMed  Google Scholar 

  83. Vardakou M, Mercuri A, Naylor TA, Rizzo D, Butler JM, Connolly PC, et al. Predicting the human in vivo performance of different oral capsule shell types using a novel in vitro dynamic gastric model. Int J Pharm. 2011;419(1-2):192–9.

    Article  CAS  PubMed  Google Scholar 

  84. Mann JCP, S. R. A formulation case study comparing the dynamic gastric model with conventional dissolution methods. Dissolution Technologies. 2012;19(4):14–9.

    Article  CAS  Google Scholar 

  85. Verwei M, Minekus M, Zeijdner E, Schilderink R, Havenaar R. Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract (TIM-1 and tiny-TIM) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms. Int J Pharm. 2016;498(1-2):178–86.

    Article  CAS  PubMed  Google Scholar 

  86. Wojtunik-Kulesza K, Oniszczuk A, Oniszczuk T, Combrzynski M, Nowakowska D, Matwijczuk A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols-a non-systematic review. Nutrients. 2020;12(5).

  87. Minekus MMP, Havenaar R, Huis in’t Veld JHJ. A multicompartmental dynamic computercontrolled model simulating the stomach and small intestine. ATLA. 1995;23:197-209.

  88. Gonzalez C, Gonzalez D, Zuniga RN, Estay H, Troncoso E. Simulation of human small intestinal digestion of starch using an in vitro system based on a dialysis membrane process. Foods. 2020;9(7).

  89. Wijayaa WZH, Zheng T, Su S, Patel AR, Van der Meerena P, Huang Q. Improved bioaccessibility of polymethoxyflavones loaded into high internal phase emulsions stabilized by biopolymeric complexes: a dynamic digestion study via TNO’s gastrointestinal model. Curr Res Food Sci. 2020;2:11–9.

    Article  Google Scholar 

  90. Cardot J-MB E, Alric M. In vitro–in vivo correlation: importance of dissolution in IVIVC. Dissolution Technologies. 2007;14:15–9.

    Article  Google Scholar 

  91. Dickinson PA, Abu Rmaileh R, Ashworth L, Barker RA, Burke WM, Patterson CM, et al. An investigation into the utility of a multi-compartmental, dynamic, system of the upper gastrointestinal tract to support formulation development and establish bioequivalence of poorly soluble drugs. AAPS J. 2012;14(2):196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bellmann SLJ, Gorissen T, Minekus M, Havenaar R. Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology. Food Res Int. 2016;88:191–8.

    Article  CAS  Google Scholar 

  93. Schilderink R, Protopappa M, Fleth-James J, Vertzoni M, Schaefer K, Havenaar R, et al. On the usefulness of compendial setups and tiny-TIM system in evaluating the in vivo performance of oral drug products with various release profiles in the fasted state: case example sodium salt of A6197. Eur J Pharm Biopharm. 2020;149:154–62.

    Article  CAS  PubMed  Google Scholar 

  94. Van Den Abeele J, Schilderink R, Schneider F, Mols R, Minekus M, Weitschies W, et al. Gastrointestinal and systemic disposition of diclofenac under fasted and fed state conditions supporting the evaluation of in vitro predictive tools. Mol Pharm. 2017;14(12):4220–32.

    Article  Google Scholar 

  95. Zhang M, Pan Y, Dong Q, Tang X, Xin Y, Yin B, et al. Development of organogel-based emulsions to enhance the loading and bioaccessibility of 5-demethylnobiletin. Food Res Int. 2021;148:110592.

    Article  CAS  PubMed  Google Scholar 

  96. Tang X, Zhang M, Zhang H, Pan Y, Dong Q, Xin Y, et al. Evaluation of the bioaccessibility of tetrahydrocurcumin-hyaluronic acid conjugate using in vitro and ex vivo models. Int J Biol Macromol. 2021;182:1322–30.

    Article  CAS  PubMed  Google Scholar 

  97. Zheng H, Wijaya W, Zhang H, Feng K, Liu Q, Zheng T, et al. Improving the bioaccessibility and bioavailability of carnosic acid using a lecithin-based nanoemulsion: complementary in vitro and in vivo studies. Food Funct. 2020;11(9):8141–9.

    Article  CAS  PubMed  Google Scholar 

  98. Huang Y, Yu Q, Chen Z, Wu W, Zhu Q, Lu Y. In vitro and in vivo correlation for lipid-based formulations: current status and future perspectives. Acta Pharm Sin B. 2021;11(8):2469–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Souliman S, Blanquet S, Beyssac E, Cardot JM. A level A in vitro/in vivo correlation in fasted and fed states using different methods: applied to solid immediate release oral dosage form. Eur J Pharm Sci. 2006;27(1):72–9.

    Article  CAS  PubMed  Google Scholar 

  100. Minekus M, Verhoeckx K, Cotter P, Lopez-Exposito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H. The impact of food bioactives on health. In vitro and ex vivo models. 2015:37–46.

  101. Lyng E, Havenaar R, Shastri P, Hetsco L, Vick A, Sagartz J. Increased bioavailability of celecoxib under fed versus fasted conditions is determined by postprandial bile secretion as demonstrated in a dynamic gastrointestinal model. Drug Dev Ind Pharm. 2016;42(8):1334–9.

    Article  CAS  PubMed  Google Scholar 

  102. Guerra A, Etienne-Mesmin L, Livrelli V, Denis S, Blanquet-Diot S, Alric M. Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol. 2012;30(11):591–600.

    Article  CAS  PubMed  Google Scholar 

  103. Mulet-Cabero AI, Egger L, Portmann R, Menard O, Marze S, Minekus M, et al. A standardised semi-dynamic in vitro digestion method suitable for food - an international consensus. Food Funct. 2020;11(2):1702–20.

    Article  PubMed  Google Scholar 

  104. Phinney DM. Design, construction, and evaluation of a reactor designed to mimic human gastric digestion. Davis: University of California; 2013.

    Google Scholar 

  105. Guo Q, Ye A, Lad M, Dalgleish D, Singh H. Effect of gel structure on the gastric digestion of whey protein emulsion gels. Soft Matter. 2014;10(8):1214–23.

    Article  CAS  PubMed  Google Scholar 

  106. Takeuchi S, Tsume Y, Amidon GE, Amidon GL. Evaluation of a three compartment in vitro gastrointestinal simulator dissolution apparatus to predict in vivo dissolution. J Pharm Sci. 2014;103(11):3416–22.

    Article  CAS  PubMed  Google Scholar 

  107. FDA/CDER US. Dissolution testing of immediate release solid oral dosage forms. 1997.

  108. Suarez-Sharp S, Cohen M, Kesisoglou F, Abend A, Marroum P, Delvadia P, et al. Applications of clinically relevant dissolution testing: workshop summary report. AAPS J. 2018;20(6):93.

    Article  PubMed  Google Scholar 

  109. Agency EM. Reflection paper on the dissolution specification for generic solid oral immediate release products with systemic action. 2017.

  110. McAllister M, Flanagan T, Boon K, Pepin X, Tistaert C, Jamei M, et al. Developing clinically relevant dissolution specifications for oral drug products-industrial and regulatory perspectives. Pharmaceutics. 2019;12(1).

  111. Qureshi SA. Developing discriminatory drug dissolution tests and profiles: some thoughts for consideration on the concept and its interpretation. 2006;Dissolution Technologies:18-23.

  112. Farhatjahan Shaikh VP, Meenakshi Patel, Naazneen Surt. Dissolution method development and validation for lercanidipine hydrochloride tablets. Dissolution Technologies. 2018:38-45.

  113. Bhatt S, Roy D, Kumar M, Saharan R, Malik A, Saini V. Development and validation of in vitro discriminatory dissolution testing method for fast dispersible tablets of BCS class II drug. Turk J Pharm Sci. 2020;17(1):74–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. FDA/CDER US. Bioavailability studies submitted in NDAs or INDs – general considerations. 2019.

  115. Bennett-Lenane H, Griffin BT, O’Shea JP. Machine learning methods for prediction of food effects on bioavailability: a comparison of support vector machines and artificial neural networks. Eur J Pharm Sci. 2022;168:106018.

    Article  CAS  PubMed  Google Scholar 

  116. Ryu JY, Kim HU, Lee SY. Deep learning improves prediction of drug-drug and drug-food interactions. Proc Natl Acad Sci U S A. 2018;115(18):E4304–E11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang TW, E. A review of current methods for food effect prediction during drug development. Curr Pharmacol Rep. 2020;6:1–13.

    Article  CAS  Google Scholar 

  118. Manda A, Walker RB, Khamanga SMM. An artificial neural network approach to predict the effects of formulation and process variables on prednisone release from a multipartite system. Pharmaceutics. 2019;11(3).

  119. Heimbach T, Xia B, Lin TH, He H. Case studies for practical food effect assessments across BCS/BDDCS class compounds using in silico, in vitro, and preclinical in vivo data. AAPS J. 2013;15(1):143–58.

    Article  CAS  PubMed  Google Scholar 

  120. Christiansen ML, Mullertz A, Garmer M, Kristensen J, Jacobsen J, Abrahamsson B, et al. Evaluation of the use of Gottingen minipigs to predict food effects on the oral absorption of drugs in humans. J Pharm Sci. 2015;104(1):135–43.

    Article  CAS  PubMed  Google Scholar 

  121. Emami RA. Predicting food effects: are we there yet? AAPS J. 2022;24(1):25.

    Article  Google Scholar 

  122. Rebeka J, Jerneja O, Igor L, Bostjan P, Aleksander B, Simon Z, et al. PBPK absorption modeling of food effect and bioequivalence in fed state for two formulations with crystalline and amorphous forms of BCS 2 class drug in generic drug development. AAPS PharmSciTech. 2019;20(2):59.

    Article  CAS  PubMed  Google Scholar 

  123. (CDER) UDoHaHSFaDACfDEaR. Physiologically based pharmacokinetic analyses. 2018.

  124. Jiang W, Kim S, Zhang X, Lionberger RA, Davit BM, Conner DP, et al. The role of predictive biopharmaceutical modeling and simulation in drug development and regulatory evaluation. Int J Pharm. 2011;418(2):151–60.

    Article  CAS  PubMed  Google Scholar 

  125. Suri A, Chapel S, Lu C, Venkatakrishnan K. Physiologically based and population PK modeling in optimizing drug development: a predict-learn-confirm analysis. Clin Pharmacol Ther. 2015;98(3):336–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43(11):1823–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shardlow CE, Generaux GT, Patel AH, Tai G, Tran T, Bloomer JC. Impact of physiologically based pharmacokinetic modeling and simulation in drug development. Drug Metab Dispos. 2013;41(12):1994–2003.

    Article  CAS  PubMed  Google Scholar 

  128. Tistaert C, Heimbach T, Xia B, Parrott N, Samant TS, Kesisoglou F. Food effect projections via physiologically based pharmacokinetic modeling: predictive case studies. J Pharm Sci. 2019;108(1):592–602.

    Article  CAS  PubMed  Google Scholar 

  129. Li M, Zhao P, Pan Y, Wagner C. Predictive performance of physiologically based pharmacokinetic models for the effect of food on oral drug absorption: current status. CPT Pharmacometrics Syst Pharmacol. 2018;7(2):82–9.

    Article  CAS  PubMed  Google Scholar 

  130. Emami Riedmaier A, Lindley DJ, Hall JA, Castleberry S, Slade RT, Stuart P, et al. Mechanistic physiologically based pharmacokinetic modeling of the dissolution and food effect of a biopharmaceutics classification system IV compound-the venetoclax story. J Pharm Sci. 2018;107(1):495–502.

    Article  CAS  PubMed  Google Scholar 

  131. Kaur N, Narang A, Bansal AK. Use of biorelevant dissolution and PBPK modeling to predict oral drug absorption. Eur J Pharm Biopharm. 2018;129:222–46.

    Article  CAS  PubMed  Google Scholar 

  132. Gao H, Wang W, Dong J, Ye Z, Ouyang D. An integrated computational methodology with data-driven machine learning, molecular modeling and PBPK modeling to accelerate solid dispersion formulation design. Eur J Pharm Biopharm. 2021;158:336–46.

    Article  CAS  PubMed  Google Scholar 

  133. Doroshyenko O, Jetter A, Odenthal KP, Fuhr U. Clinical pharmacokinetics of trospium chloride. Clin Pharmacokinet. 2005;44(7):701–20.

    Article  CAS  PubMed  Google Scholar 

  134. Wagner C, Kesisoglou F, Pepin XJH, Parrott N, Emami RA. Use of physiologically based pharmacokinetic modeling for predicting drug–food interactions: recommendations for improving predictive performance of low confidence food effect models. AAPS J. 2021;23(4):85.

    Article  CAS  PubMed  Google Scholar 

  135. Radwan A, Amidon GL, Langguth P. Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations: the importance of viscosity. Biopharm Drug Dispos. 2012;33(7):403–16.

    Article  CAS  PubMed  Google Scholar 

  136. Dong Z, Li J, Wu F, Zhao P, Lee SC, Zhang L, et al. Application of physiologically-based pharmacokinetic modeling to predict gastric pH-dependent drug-drug interactions for weak base drugs. CPT Pharmacometrics Syst Pharmacol. 2020;9(8):456–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Salem AH, Agarwal SK, Dunbar M, Nuthalapati S, Chien D, Freise KJ, et al. Effect of low- and high-fat meals on the pharmacokinetics of venetoclax, a selective first-in-class BCL-2 inhibitor. J Clin Pharmacol. 2016;56(11):1355–61.

    Article  CAS  PubMed  Google Scholar 

  138. FDA/CDER US. The use of physiologically based pharmacokinetic analyses — biopharmaceutics applications for oral drug product development, manufacturing changes, and controls. 2020.

  139. Kuemmel C, Yang Y, Zhang X, Florian J, Zhu H, Tegenge M, et al. Consideration of a credibility assessment framework in model-informed drug development: potential application to physiologically-based pharmacokinetic modeling and simulation. CPT Pharmacometrics Syst Pharmacol. 2020;9(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  140. CDER. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system guidance for industry. 2017.

  141. Khalil F, Laer S. Physiologically based pharmacokinetic modeling: methodology, applications, and limitations with a focus on its role in pediatric drug development. J Biomed Biotechnol. 2011;2011:907461.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Otsuka K, Shono Y, Dressman J. Coupling biorelevant dissolution methods with physiologically based pharmacokinetic modelling to forecast in-vivo performance of solid oral dosage forms. J Pharm Pharmacol. 2013;65(7):937–52.

    Article  CAS  PubMed  Google Scholar 

  143. Kesisoglou F. Can PBPK modeling streamline food effect assessments? J Clin Pharmacol. 2020;60(Suppl 1):S98–S104.

    CAS  PubMed  Google Scholar 

  144. Riedmaier AE, DeMent K, Huckle J, Bransford P, Stillhart C, Lloyd R, et al. Use of physiologically based pharmacokinetic (PBPK) modeling for predicting drug-food interactions: an industry perspective. AAPS J. 2020;22(6):123.

    Article  CAS  PubMed  Google Scholar 

  145. Stillhart C, Pepin X, Tistaert C, Good D, Van Den Bergh A, Parrott N, et al. PBPK absorption modeling: establishing the in vitro-in vivo link-industry perspective. AAPS J. 2019;21(2):19.

    Article  PubMed  Google Scholar 

  146. Pepin XJH, Parrott N, Dressman J, Delvadia P, Mitra A, Zhang X, et al. Current state and future expectations of translational modeling strategies to support drug product development, manufacturing changes and controls: a workshop summary report. J Pharm Sci. 2021;110(2):555–66.

    Article  CAS  PubMed  Google Scholar 

  147. Grimstein M, Yang Y, Zhang X, Grillo J, Huang SM, Zineh I, et al. Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. Food and Drug Administration’s Office of Clinical Pharmacology. J Pharm Sci. 2019;108(1):21–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Dr. Timothy R. Lex was supported in part by an appointment to the Research Participation Program at the CDER, US Food and Drug Administration, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and FDA.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Timothy R. Lex was involved in methodology, data analyses, interpretation, writing, reviewing, and editing of the manuscript. Dr. Zongming Gao and Dr. Wenlei Jiang were involved in conceptualization, methodology, data analyses, interpretation, writing, reviewing, and editing of the manuscript. Dr. Jason Rodriguez and Dr. Lei Zhang were involved in reviewing and editing of the manuscript.

Corresponding authors

Correspondence to Wenlei Jiang or Zongming Gao.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Disclaimer

This review reflects the views of the authors and should not be construed to represent FDA’s views or policies. This project was supported in part by an appointment to the Research Participation Program at the Center for Drug Evaluation and Research administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and US FDA.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lex, T.R., Rodriguez, J.D., Zhang, L. et al. Development of In Vitro Dissolution Testing Methods to Simulate Fed Conditions for Immediate Release Solid Oral Dosage Forms. AAPS J 24, 40 (2022). https://doi.org/10.1208/s12248-022-00690-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-022-00690-5

KEY WORDS

Navigation