Skip to main content

Advertisement

Log in

Measuring the Impact of Gastrointestinal Variables on the Systemic Outcome of Two Suspensions of Posaconazole by a PBPK Model

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

For the last two decades, the application of physiologically based pharmacokinetic (PBPK) models has grown exponentially in the field of oral absorption and in a regulatory context. Although these models are widely used, their predictive power should be validated and optimized in order to rely on these models and to know exactly what is going on “under the hood”. In this study, an automated sensitivity analysis (ASA) was performed for 11 gastrointestinal (GI) variables that are integrated into the PBPK software program Simcyp®. The model of interest was a previously validated workspace that was able to predict the intraluminal and systemic behavior of two different suspensions of posaconazole in the Simcyp® Simulator. The sensitivity of the following GI parameters was evaluated in this model: gastric and duodenal pH, gastric and duodenal bicarbonate concentrations (reflecting buffer capacity), duodenal bile salts concentration, gastric emptying, the interdigestive migrating motor complex (IMMC), small intestinal transit time (SITT), gastric and jejunal volumes, and permeability. The most sensitive parameters were gastric/duodenal pH and gastric emptying, for both suspensions. The outcome of the sensitivity analyses highlights the important GI variables that must be integrated into an in vivo predictive dissolution test to help and create a rational and scientific framework/design for product development of novel and generic drug products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Food and Drug Administration. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system guidance for industry [Internet]. 2015. Available from: http://www.fda.gov/downloads/Drugs/Guidances/ucm070246.pdf. Accessed 17 Jan 2017.

  2. Food and Drug Administration. Guidance for industry bioequivalence studies with pharmacokinetic endpoints for drugs submitted under an ANDA [Internet]. 2013. Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM377465.pdf. Accessed 20 Jan 2017.

  3. Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res. 2002;19(7):921–5.

    Article  PubMed  CAS  Google Scholar 

  4. Amidon GL, Lennernäs H, Shah VP, Crison JRA. Theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  PubMed  CAS  Google Scholar 

  5. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.

    Article  PubMed  CAS  Google Scholar 

  6. Hens B, Corsetti M, Spiller R, Marciani L, Vanuytsel T, Tack J, et al. Exploring gastrointestinal variables affecting drug and formulation behavior: methodologies, challenges and opportunities. Int J Pharm. 2016;59:79–97.

    Google Scholar 

  7. Lennernäs H, Aarons L, Augustijns P, Beato S, Bolger M, Box K, et al. Oral biopharmaceutics tools—time for a new initiative—an introduction to the IMI project OrBiTo. Eur J Pharm Sci. 2014;57:292–9.

    Article  PubMed  CAS  Google Scholar 

  8. Lennernäs H, Lindahl A, Van Peer A, Ollier C, Flanagan T, Lionberger R, et al. In vivo predictive dissolution (IPD) and biopharmaceutical modeling and simulation: future use of modern approaches and methodologies in a regulatory context. Mol Pharm. 2017;14(4):1307–14.

    Article  PubMed  CAS  Google Scholar 

  9. Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, et al. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:300–21.

    Article  PubMed  CAS  Google Scholar 

  10. European Medicines Agency. Guideline on the qualification and reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation [Internet]. 2016. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/07/WC500211315.pdf. Accessed 10 Oct 2017.

  11. Mitra A, Kesisoglou F, Dogterom P. Application of absorption modeling to predict bioequivalence outcome of two batches of etoricoxib tablets. AAPS PharmSciTech. 2014;16(1):76–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. The biopharmaceutics classification system: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci. 2014;57:152–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hens B, Pathak SM, Mitra A, Patel N, Liu B, Patel S, et al. In silico modeling approach for the evaluation of gastrointestinal dissolution, supersaturation, and precipitation of posaconazole. Mol Pharm. 2017;14(12):4321–33.

    Article  PubMed  CAS  Google Scholar 

  14. Hens B, Brouwers J, Corsetti M, Augustijns P. Supersaturation and precipitation of Posaconazole upon entry in the upper small intestine in humans. J Pharm Sci. 2016;105(9):2677–84.

    Article  PubMed  CAS  Google Scholar 

  15. Hens B, Brouwers J, Anneveld B, Corsetti M, Symillides M, Vertzoni M, et al. Gastrointestinal transfer: in vivo evaluation and implementation in in vitro and in silico predictive tools. Eur J Pharm Sci. 2014;63:233–42.

    Article  PubMed  CAS  Google Scholar 

  16. Food and Drug Administration. Guidance for industry: bioanalytical method validation [Internet]. 2001. Available from: https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf. Accessed 18 April 2017.

  17. Hens B, Corsetti M, Brouwers J, Augustijns P. Gastrointestinal and systemic monitoring of posaconazole in humans after fasted and fed state administration of a solid dispersion. J Pharm Sci. 2016;105(9):2904–12.

    Article  PubMed  CAS  Google Scholar 

  18. Walravens J, Brouwers J, Spriet I, Tack J, Annaert P, Augustijns P. Effect of pH and comedication on gastrointestinal absorption of posaconazole: monitoring of intraluminal and plasma drug concentrations. Clin Pharmacokinet. 2011;50(11):725–34.

    Article  PubMed  CAS  Google Scholar 

  19. Cristofoletti R, Patel N, Dressman JB. Assessment of bioequivalence of Weak Base formulations under various dosing conditions using physiologically based pharmacokinetic simulations in virtual populations. Case examples: ketoconazole and posaconazole. J Pharm Sci. 2017;106(2):560–9.

    Article  PubMed  CAS  Google Scholar 

  20. Doki K, Darwich AS, Patel N, Rostami-Hodjegan A. Virtual bioequivalence for achlorhydric subjects: the use of PBPK modelling to assess the formulation-dependent effect of achlorhydria. Eur J Pharm Sci. 2017;109:111–20.

    Article  PubMed  CAS  Google Scholar 

  21. Hens B, Tsume Y, Bermejo M, Paixao P, Koenigsknecht MJ, Baker JR, et al. Low buffer capacity and alternating motility along the human gastrointestinal tract: implications for in vivo dissolution and absorption of Ionizable drugs. Mol Pharm. 2017;14(12):4281–94.

    Article  PubMed  CAS  Google Scholar 

  22. Tsume Y, Langguth P, Garcia-Arieta A, Amidon GL. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen. Biopharm Drug Dispos. 2012;33(7):366–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Vantrappen GR, Peeters TL, Janssens J. The secretory component of the interdigestive migrating motor complex in man. Scand J Gastroenterol. 1979;14(6):663–7.

    Article  PubMed  CAS  Google Scholar 

  24. Konturek S, Trznadel W. The role of the intestine in the regulation of gastric secretion. Pol Med Sci Hist Bull. 1970;13(4):161–4.

    PubMed  CAS  Google Scholar 

  25. Baron JH. Physiological control of gastric acid secretion. Proc R Soc Med. 1971;64(7):739–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Hsieh Y-L, Ilevbare GA, Van Eerdenbrugh B, Box KJ, Sanchez-Felix MV, Taylor LS. pH-induced precipitation behavior of weakly basic compounds: determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties. Pharm Res. 2012;29(10):2738–53.

    Article  PubMed  CAS  Google Scholar 

  27. Krieg BJ, Taghavi SM, Amidon GL, Amidon GE. In vivo predictive dissolution: transport analysis of the CO2, bicarbonate in vivo buffer system. J Pharm Sci. 2014;103(11):3473–90.

    Article  PubMed  CAS  Google Scholar 

  28. Krieg BJ, Taghavi SM, Amidon GL, Amidon GE. In vivo predictive dissolution: comparing the effect of bicarbonate and phosphate buffer on the dissolution of weak acids and weak bases. J Pharm Sci. 2015;104(9):2894–904.

    Article  PubMed  CAS  Google Scholar 

  29. McNamara DP, Whitney KM, Goss SL. Use of a physiologic bicarbonate buffer system for dissolution characterization of ionizable drugs. Pharm Res. 2003;20(10):1641–6.

    Article  PubMed  CAS  Google Scholar 

  30. Rees W, Bothan D, Turnberg LA. A demonstration of bicarbonate production by the normal human stomach in vivo. Dig Dis Sci. 1982;27:961–6.

    Article  PubMed  CAS  Google Scholar 

  31. Mooney KG, Mintun MA, Himmelstein KJ, Stella VJ. Dissolution kinetics of carboxylic acids I: effect of pH under unbuffered conditions. J Pharm Sci. 1981;70(1):13–22.

    Article  PubMed  CAS  Google Scholar 

  32. Sheng JJ, McNamara DP, Amidon GL. Toward an in vivo dissolution methodology: a comparison of phosphate and bicarbonate buffers. Mol Pharm. 2009;6(1):29–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Garbacz G, Kołodziej B, Koziolek M, Weitschies W, Klein S. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds. Eur J Pharm Sci. 2014;51:224–31.

    Article  PubMed  CAS  Google Scholar 

  34. Fadda HM, Merchant HA, Arafat BT, Basit AW. Physiological bicarbonate buffers: stabilisation and use as dissolution media for modified release systems. Int J Pharm. 2009;382(1–2):56–60.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang X, Duan J, Kesisoglou F, Novakovic J, Amidon G, Jamei M, et al. Mechanistic oral absorption modeling and simulation for formulation development and bioequivalence evaluation: report of an FDA public workshop. CPT Pharmacometrics Syst Pharmacol. 2017;6(8):492–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Riethorst D, Mols R, Duchateau G, Tack J, Brouwers J, Augustijns P. Characterization of human duodenal fluids in fasted and fed state conditions. J Pharm Sci. 2016 Feb;105(2):673–81.

    Article  PubMed  CAS  Google Scholar 

  37. Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.

    Article  PubMed  CAS  Google Scholar 

  38. Augustijns P, Wuyts B, Hens B, Annaert P, Butler J, Brouwers J. A review of drug solubility in human intestinal fluids: implications for the prediction of oral absorption. Eur J Pharm Sci. 2014;57:322–32.

    Article  PubMed  CAS  Google Scholar 

  39. Sansone-Parsons A, Krishna G, Calzetta A, Wexler D, Kantesaria B, Rosenberg MA, et al. Effect of a nutritional supplement on posaconazole pharmacokinetics following oral administration to healthy volunteers. Antimicrob Agents Chemother. 2006;50(5):1881–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Krishna G, Ma L, Martinho M, O’Mara E. Single-dose phase I study to evaluate the pharmacokinetics of posaconazole in new tablet and capsule formulations relative to oral suspension. Antimicrob Agents Chemother. 2012;56(8):4196–201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kostewicz ES, Wunderlich M, Brauns U, Becker R, Bock T, Dressman JB. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol. 2004;56(1):43–51.

    Article  PubMed  CAS  Google Scholar 

  42. Shono Y, Jantratid E, Dressman JB. Precipitation in the small intestine may play a more important role in the in vivo performance of poorly soluble weak bases in the fasted state: case example nelfinavir. Eur J Pharm Biopharm. 2011;79(2):349–56.

    Article  PubMed  CAS  Google Scholar 

  43. Koziolek M, Grimm M, Garbacz G, Kühn J-P, Weitschies W. Intragastric volume changes after intake of a high-caloric, high-fat standard breakfast in healthy human subjects investigated by MRI. Mol Pharm. 2014;11(5):1632–9.

    Article  PubMed  CAS  Google Scholar 

  44. Oberle RL, Chen TS, Lloyd C, Barnett JL, Owyang C, Meyer J, et al. The influence of the interdigestive migrating myoelectric complex on the gastric emptying of liquids. Gastroenterology. 1990;99(5):1275–82.

    Article  PubMed  CAS  Google Scholar 

  45. Deloose E, Janssen P, Depoortere I, Tack J. The migrating motor complex: control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol. 2012;9(5):271–85.

    Article  PubMed  CAS  Google Scholar 

  46. Dooley CP, Di Lorenzo C, Valenzuela JE. Variability of migrating motor complex in humans. Dig Dis Sci. 1992;37(5):723–8.

    Article  PubMed  CAS  Google Scholar 

  47. Code CF. The interdigestive housekeeper of the gastrointestinal tract. Perspect Biol Med. 1979;22(2–2):S49–55.

    Article  Google Scholar 

  48. Grivel ML, Ruckebusch Y. The propagation of segmental contractions along the small intestine. J Physiol Lond. 1972;227(2):611–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hunt JN, Macdonald I. The influence of volume on gastric emptying. J Physiol Lond. 1954;126(3):459–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Oberle RL, Amidon GL. The influence of variable gastric emptying and intestinal transit rates on the plasma level curve of cimetidine; an explanation for the double peak phenomenon. J Pharmacokinet Biopharm. 1987;15(5):529–44.

    Article  PubMed  CAS  Google Scholar 

  51. Sjövall H, Hagman I, Abrahamsson H. Relationship between interdigestive duodenal motility and fluid transport in humans. Am J Phys. 1990;259(3 Pt 1):G348–54.

    Google Scholar 

  52. DiMagno EP. Regulation of interdigestive gastrointestinal motility and secretion. Digestion. 1997;58:53–5.

    Article  PubMed  Google Scholar 

  53. Sjövall H. Meaningful or redundant complexity - mechanisms behind cyclic changes in gastroduodenal pH in the fasting state. Acta Physiol (Oxf). 2011;201(1):127–31.

    Article  CAS  Google Scholar 

  54. Dalenbäck J, Abrahamson H, Björnson E, Fändriks L, Mattsson A, Olbe L, et al. Human duodenogastric reflux, retroperistalsis, and MMC. Am J Phys. 1998;275(3 Pt 2):R762–9.

    Google Scholar 

  55. Mellander A, Sjövall H. Indirect evidence for cholinergic inhibition of intestinal bicarbonate absorption in humans. Gut. 1999;44(3):353–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Layer P, Chan AT, Go VL, Zinsmeister AR, DiMagno EP. Cholinergic regulation of phase II interdigestive pancreatic secretion in humans. Pancreas. 1993;8(2):181–8.

    Article  PubMed  CAS  Google Scholar 

  57. Cassilly D, Kantor S, Knight LC, Maurer AH, Fisher RS, Semler J, et al. Gastric emptying of a non-digestible solid: assessment with simultaneous SmartPill pH and pressure capsule, antroduodenal manometry, gastric emptying scintigraphy. Neurogastroenterology & Motility. 2008;20(4):311–9.

    Article  CAS  Google Scholar 

  58. Davis SS, Hardy JG, Taylor MJ, Whalley DR, Wilson CG. A comparative study of the gastrointestinal transit of a pellet and tablet formulation. Int J Pharm. 1984;21(2):167–77.

    Article  CAS  Google Scholar 

  59. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Pathak S, Frank K, Patel N, Liu B, Masoud J, Turner D. Mechanistic model based analysis of biopharmaceutics experiments: application of in vitro/in vivo extrapolation techniques within a PBPK modeling framework [Internet]. 2016. Poster presented at: AAPS Annual Meeting, 2016 Nov 16; Denver, CO. Available from: https://annual.aapsmeeting.org/poster/member/65918.

  61. Schiller C, Fröhlich C-P, Giessmann T, Siegmund W, Mönnikes H, Hosten N, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22(10):971–9.

    Article  PubMed  CAS  Google Scholar 

  62. Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Amidon GL, et al. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm. 2014;11(9):3039–47.

    Article  PubMed  CAS  Google Scholar 

  63. Yu A, Jackson T, Tsume Y, Koenigsknecht M, Wysocki J, Marciani L, et al. Mechanistic fluid transport model to estimate gastrointestinal fluid volume and its dynamic change over time. AAPS J. 2017;19:1682–90.

    Article  PubMed  Google Scholar 

  64. Lennernäs H. Human jejunal effective permeability and its correlation with preclinical drug absorption models. J Pharm Pharmacol. 1997;49(7):627–38.

    Article  PubMed  Google Scholar 

  65. van de Waterbeemd H, Lennernäs H, Artursson P. Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability. Wiley; 2006. 606 p.

  66. Jobin G, Cortot A, Godbillon J, Duval M, Schoeller J, Hirtz J, et al. Investigation of drug absorption from the gastrointestinal tract of man. I. Metoprolol in the stomach, duodenum and jejunum. Br J Clin Pharmacol. 1985;19(S2):97S–105S.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sutcliffe FA, Riley SA, Kaser-Liard B, Turnberg LA, Rowland M. Absorption of drug from the human jejunum and ileum. Br J Clin Pharmacol. 1988;26:206–7.

    Google Scholar 

  68. Lennernäs H. Human intestinal permeability. J Pharm Sci. 1998;87(4):403–10.

    Article  PubMed  Google Scholar 

  69. Dahlgren D, Roos C, Lundqvist A, Abrahamsson B, Tannergren C, Hellström PM, et al. Regional intestinal permeability of three model drugs in human. Mol Pharm. 2016;13(9):3013–21.

    Article  PubMed  CAS  Google Scholar 

  70. Lozoya-Agullo I, Zur M, Wolk O, Beig A, González-Álvarez I, González-Álvarez M, et al. In-situ intestinal rat perfusions for human Fabs prediction and BCS permeability class determination: investigation of the single-pass vs. the Doluisio experimental approaches. Int J Pharm. 2015;480:1–2):1–7.

    Article  PubMed  CAS  Google Scholar 

  71. Lozoya-Agullo I, Zur M, Beig A, Fine N, Cohen Y, González-Álvarez M, et al. Segmental-dependent permeability throughout the small intestine following oral drug administration: single-pass vs. Doluisio approach to in-situ rat perfusion. Int J Pharm. 2016;515(1–2):201–8.

    Article  PubMed  CAS  Google Scholar 

  72. Wuyts B, Riethorst D, Brouwers J, Tack J, Annaert P, Augustijns P. Evaluation of fasted state human intestinal fluid as apical solvent system in the Caco-2 absorption model and comparison with FaSSIF. Eur J Pharm Sci. 2015;67:126–35.

    Article  PubMed  CAS  Google Scholar 

  73. Berben P, Brouwers J, Augustijns P. The artificial membrane insert system as predictive tool for formulation performance evaluation. Int J Pharm. 2018;537(1–2):22–9.

    Article  PubMed  CAS  Google Scholar 

  74. Sironi D, Rosenberg J, Bauer-Brandl A, Brandl M. Dynamic dissolution−/permeation-testing of nano- and microparticle formulations of fenofibrate. Eur J Pharm Sci. 2017;96:20–7.

    Article  PubMed  CAS  Google Scholar 

  75. US Food and Drug Administration. Physiologically based pharmacokinetic analyses—format and content guidance for industry [Internet]. 2017. Available from: https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM531207.pdf. Accessed 2017 Oct 17

  76. Chow ECY, Talattof A, Tsakalozou E, Fan J, Zhao L, Zhang X. Using physiologically based pharmacokinetic (PBPK) modeling to evaluate the impact of pharmaceutical excipients on oral drug absorption: sensitivity analyses. AAPS J. 2016;18(6):1500–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclaimer

This report represents the scientific views of the authors and not necessarily that of the FDA. Part of this work was presented at the Simcyp Virtual Webinar 2017—part II.

Funding

This work was supported by grant No. HHSF223201510157C and grant No. HHSF223201310144C by the US Food and Drug Administration (FDA). This work has received support from the internal funds of KU Leuven (PDM/17/164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon L. Amidon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hens, B., Talattof, A., Paixão, P. et al. Measuring the Impact of Gastrointestinal Variables on the Systemic Outcome of Two Suspensions of Posaconazole by a PBPK Model. AAPS J 20, 57 (2018). https://doi.org/10.1208/s12248-018-0217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-018-0217-6

KEY WORDS

Navigation