1 Introduction

The incompressible flow in porous media bears important significance in mathematical physics [1]. The Cauchy problem of the 3D incompressible dissipative porous media equation assumes the form

$$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad}l}\theta_{t}+u\cdot\nabla\theta+\nu\Lambda^{\alpha}\theta =0,& x\in\mathbb{R}^{3}, t>0,\\ u(t,x)=-k(\nabla p+g\gamma\theta),& x\in\mathbb{R}^{3}, t>0,\\ \operatorname{div}u(t,x)=0,\\ \theta(0,x)=\theta_{0}(x),& x\in\mathbb{R}^{3}, \end{array}\displaystyle \right . \end{aligned}$$
(1.1)

where \(0\leq\alpha\leq2\), \(\Lambda=\sqrt{-\Delta}\) is the Zygmund operator, \(\nu>0\) is the dissipative coefficient, scalar function \(\theta=\theta(t,x)\) is the liquid temperature, \(u=u(t,x)\) is the liquid discharge (flux per unit area) to model the flow velocity by the Darcy law, k is the matrix of position-independent medium permeabilities in the different directions, respectively, divided by the viscosity, p is the pressure, g is the acceleration due to gravity and \(\gamma\in\mathbb{R}^{3}\) is the last canonical vector \(\mathbf{e}_{3}\). For simplicity, we set \(g=1\) and \(k=I\), the identity matrix.

The fractional Laplacian \(\Lambda^{\alpha}\) is defined through the Fourier transform

$$\widehat{\Lambda^{\alpha}\theta}(\xi)=\vert \xi \vert ^{\alpha } \widehat{\theta}(\xi),\quad0< \alpha< 2. $$

The cases \(0\leq\alpha<1\), \(\alpha=1\), \(1<\alpha\leq2\) are called supercritical, critical, subcritical, respectively. Roughly speaking, the critical and supercritical cases are mathematically harder to deal with than the subcritical case. For the fractional Laplacian \(\Lambda ^{\alpha}\), we refer the reader to [14].

According to the Darcy law and the incompressibility condition, for \(x\in\mathbb{R}^{3}\) one has [1]

$$\begin{aligned} -\Delta_{x} u(t,x) =&\operatorname{curl}\bigl(\operatorname{curl} u(t,x)\bigr) \\ =& \biggl(-\frac{\partial^{2}\theta}{\partial x_{1}\,\partial x_{3}},-\frac {\partial^{2}\theta}{\partial x_{2}\,\partial x_{3}}, \frac{\partial ^{2}\theta}{\partial x_{1}^{2}}+ \frac{\partial^{2}\theta}{\partial x_{2}^{2}} \biggr), \end{aligned}$$

using the Newton potential formula and integrating by parts, we have

$$\begin{aligned} u(t,x) =&-\frac{2}{3}\bigl(0,0,\theta(t,x)\bigr)+\frac{1}{4\pi} \mbox{P.V.} \int _{\mathbb{R}^{3}}K(x-y)\theta(t,y)\,dy \\ :=&\mathcal{C}(\theta)+\mathcal{S}(\theta), \end{aligned}$$

where the integral kernel is

$$K(x)= \biggl(\frac{3x_{1}x_{3}}{\vert x\vert ^{5}},\frac {3x_{2}x_{3}}{\vert x\vert ^{5}},\frac {2x_{3}^{2}-x_{1}^{2}-x_{2}^{2}}{\vert x\vert ^{5}} \biggr), $$

\(x=(x_{1},x_{2},x_{3})\in\mathbb{R}^{3}\), and \(\mathcal{C}=(\mathcal {C}_{k})\), \(\mathcal{S}=(\mathcal{S}_{k})\), \(1\leq k\leq3\), are all operators mapping scalar functions to vector-valued functions and \(\mathcal{C}_{k}\) equals a constant multiplication operator whereas \(\mathcal{S}_{k}\) means a Calderón-Zygmund singular integral operator.

The global and local well-posedness of the Cauchy problem (1.1) have been intensively investigated in the last few years.

Córdoba, Gancedo, and Orive [5] studied the analytical behavior of solutions with infinite energy in the case \(\nu =0\) (without dissipation) in the two dimensional space, they obtained the local existence and uniqueness by the particle trajectory method in Hölder spaces \(C^{s}(\mathbb{R}^{2})\) for \(0< s<1\) and gave some blow-up criteria. Very recently, Córdoba, Faraco, and Gancedo [6] proved the non-uniqueness of solutions in \(L^{\infty }(\mathbb{T}^{2})\) (\(\mathbb{T}^{2}\) is the two dimensional flat torus) in space and time, Bae and Granero-Belinchón [7] studied transport equations with different nonlocal velocity fields and proved global weak solutions for very rough initial data (merely \(L^{1+}\)) for a one dimensional model of the incompressible porous media equation, and one dimensional and n dimensional models of the dissipative incompressible porous medium equation in the periodic domain.

Castro et al. [1] obtained the existence of strong solutions with regular initial data in the Sobolev space \(\theta _{0}(x)\in H^{s}(\mathbb{R}^{N})\) (\(s>0\)) for the subcritical case \(1<\alpha \leq2\). For the supercritical case \(0\leq\alpha<1\), they also obtained the local well-posedness in the space \(H^{s}(\mathbb{R}^{N})\), \(s>\frac {N-\alpha}{2}+1\), and they extended it to be global under a smallness condition \(\Vert \theta_{0}\Vert _{H^{s}}< c\nu\) on the initial data \(\theta_{0}\in H^{s}\) with \(s>\frac{N}{2}+1\). In the critical case \(\alpha=1\), the existence of strong solutions was obtained. They also proved the global existence of weak solutions with \(0\leq\alpha\leq2\).

Due to the method established by Hmidi and Keraani [8] for the quasi-geostrophic equation for \(0<\alpha<1\), Xue [9] established the local well-posedness of the porous media equation (1.1) in the Besov space \(B_{p,1}^{s}(\mathbb{R}^{N})\) (\(1\leq p <\infty\), \(s\geq1+\frac{N}{p}-\alpha\)) and in \(B_{\infty,1}^{s}(\mathbb {R}^{N})\cap\dot{B}_{\infty,1}^{0}(\mathbb{R}^{N})\) (\(s\geq1-\alpha\)), respectively. Furthermore, Xue [9] also obtained the global well-posedness with small initial data in \(\dot{B}_{\infty,1}^{1-\alpha }(\mathbb{R}^{N})\).

For the critical case \(\alpha=1\), by the method of modulus of continuity [10] and the Fourier localization technique, Yuan and Yuan [11] proved the global well-posedness in the critical Besov space \(\dot{B}_{p,1}^{\frac{3}{p}}(\mathbb{R}^{3})\), \(1\leq p \leq\infty\).

Based on Besov space techniques and the method of modulus of continuity, Yamazaki [12] studied the regularized IPM equation in the supercritical regime and the global well-posedness was established in the Sobolev space \(H^{m}(\mathbb{R}^{3})\), \(m \in\mathbb {Z}^{+}\), \(m>\frac{5}{2}\).

We recall that the Triebel-Lizorkin space is a unification of most of the classical function spaces used in partial differential equations such as Lebesgue space \(L^{p}(\mathbb{R}^{N})\), Sobolev space \(H_{p}^{s}(\mathbb{R}^{N})\) and Hölder space \(C^{s}(\mathbb {R}^{N})\) for \(s>0\). Chae discussed the local well-posedness and blow-up criterion in the Triebel-Lizorkin space, respectively, for the Euler equation in [13] and for the quasi-geostrophic equation in [14]. Wang and Tang [1517] studied the long time dynamics of 2D quasi-geostrophic equations.

In this paper, we focus on the critical case \(\alpha=1\) in the Triebel-Lizorkin space \(F^{s}_{p,q}(\mathbb{R}^{3})\) with \(s>\frac {3}{p}\), \(p, q \in(1,\infty)\). With the aid of the pointwise exponential decay estimate of the fractional heat semigroup \(e^{-t\nu \Lambda^{\alpha}}\),

$$\begin{aligned} \bigl\vert e^{-t\nu\Lambda^{\alpha}}\dot{\Delta}_{j}f(x)\bigr\vert \leq Ce^{-ct2^{j\alpha}}\mathcal{M}(\dot{\Delta}_{j}f) (x),\quad j\in \mathbb{Z}, \end{aligned}$$
(1.2)

where \(\dot{\Delta}_{j}\) is the Littlewood-Paley projection to the annulus \(\{\vert \xi \vert \sim2^{j}\}\) and \(\mathcal{M}\) is the Hardy-Littlewood maximal operator, if we work in a suitable space-time Triebel-Lizorkin space, after integrating in time we can get α derivatives from (1.2). Especially, for \(\alpha=1\), we can obtain the first order derivative which exactly balances the nonlinear term.

Our main result reads as follows.

Theorem 1.1

Assume that \(\alpha=1\) and \(\theta_{0}\in F_{p,q}^{s}(\mathbb{R}^{3})\) with \(s>\frac{3}{p}\), \(p, q\in(1,\infty)\). If there exists a positive constant ϵ such that \(\Vert \theta_{0}\Vert _{F_{p,q}^{s}}< \epsilon\), then the Cauchy problem (1.1) of 3D incompressible critical dissipative porous media equation possesses a unique global solution \(\theta(t,x)\) such that

$$\theta(t,x)\in\mathbf{C}\bigl([0,+\infty);F_{p,q}^{s}\bigr) \cap\tilde {L}^{1}\bigl(0,+\infty;\dot{F}_{p,q}^{s+1} \bigr). $$

Remark 1.1

Since \(F_{p,2}^{s}(\mathbb {R}^{N})=H_{p}^{s}(\mathbb{R}^{N})\), Theorem 1.1 implies that the Cauchy problem (1.1) has a global solution with small initial data in the Sobolev space \(H_{p}^{s}(\mathbb{R}^{3})\), \(s>\frac{3}{p}\), \(1< p<\infty\).

Throughout this paper, C stands for a constant which may vary from line to line. We shall sometimes use the notation \(A \lesssim B\) instead of \(A \leq CB\), and \(A\approx B\) means that \(A \lesssim B \) and \(B\lesssim A\).

2 Preliminaries

In this section, we provide a characterization of the Triebel-Lizorkin space based on the Littlewood-Paley decomposition. We follow [13, 14, 1820].

We start with the dyadic partition of unity. Choose two nonnegative radial functions \(\chi, \varphi\in\mathcal{S}(\mathbb{R}^{N})\), supported, respectively, in the ball \(\mathcal{B}=\{\xi\in\mathbb {R}^{N}, \vert \xi \vert \leq\frac{4}{3}\}\) and in the ring \(\mathcal{C}=\{\xi\in\mathbb{R}^{N}, \frac{3}{4}\leq \vert \xi \vert \leq\frac{8}{3}\}\), such that

$$\begin{aligned}& \chi(\xi)+\sum_{j\geq0}\varphi\bigl(2^{-j} \xi\bigr)=1, \quad\xi\in\mathbb {R}^{N}, \end{aligned}$$
(2.1)
$$\begin{aligned}& \sum_{j\in\mathbb{Z}}\varphi\bigl(2^{-j}\xi \bigr)=1, \quad\xi\in\mathbb {R}^{N}\setminus\{0\}. \end{aligned}$$
(2.2)

Then for \(u \in\mathcal{S}'(\mathbb{R}^{N})\), the homogeneous dyadic block \(\dot{\Delta}_{j} \), and the nonhomogeneous dyadic block \(\Delta_{j}\) are defined as follows:

$$\begin{aligned}& \dot{\Delta}_{j}u(x)=\varphi\bigl(2^{-j}D\bigr)u(x)= \mathcal{F}^{-1}\bigl(\varphi \bigl(2^{-j}\xi\bigr)\hat{u}( \xi)\bigr) (x),\quad \forall j \in\mathbb{Z}; \end{aligned}$$
(2.3)
$$\begin{aligned}& \Delta_{j}u(x)=0,\quad j \leq-2;\qquad \Delta_{-1}u=\chi(D)u, \qquad \Delta_{j}u(x)=\varphi\bigl(2^{-j}D\bigr)u,\quad j\geq0. \end{aligned}$$
(2.4)

The homogeneous low-frequency cut-off operator \(\dot{S}_{j}\) is defined by

$$\begin{aligned} \dot{S}_{j}u=\chi\bigl(2^{-j}D\bigr)u,\quad j \in \mathbb{Z}. \end{aligned}$$
(2.5)

It is easily checked that

$$\begin{aligned}& \dot{\Delta}_{j}\dot{\Delta}_{k}u=0, \quad \vert j-k \vert \geq2. \end{aligned}$$
(2.6)
$$\begin{aligned}& \dot{\Delta}_{j}(\dot{S}_{k-1}u\dot{\Delta}_{k}u)=0,\quad \vert j-k\vert \geq5. \end{aligned}$$
(2.7)

Using the notations \(\dot{\Delta}_{j}\) and \(\dot{S}_{j} \), the usual product uv of two distributions u and v can be decomposed into three parts in terms of the paraproduct operators introduced by Bony [19].

Formally, we can write the homogeneous Bony paraproduct decomposition

$$ uv=T_{u}v + T_{v}u + R(u, v), $$
(2.8)

where

$$\begin{aligned} T_{u}v=\sum_{j \in\mathbb{Z}}\dot{S}_{j-1}u \dot{\Delta}_{j}v, \qquad R(u, v)=\sum_{j \in\mathbb{Z}} \sum_{\vert \nu \vert \leq 1}\dot{\Delta}_{j-\nu}u\dot{ \Delta}_{j}v. \end{aligned}$$

Let us now introduce the Triebel-Lizorkin spaces.

Definition 2.1

Let \(s \in\mathbb{R}\), \(p, q \in [1,\infty]\). The homogeneous Triebel-Lizorkin space \(\dot{F}_{p,q}^{s}\) is defined by

$$\dot{F}_{p,q}^{s}\bigl(\mathbb{R}^{N}\bigr)=\bigl\{ u \in\mathcal{S}'\bigl(\mathbb{R}^{N}\bigr)/ \mathcal{P} \bigl(\mathbb{R}^{N}\bigr),\Vert u\Vert _{\dot {F}_{p,q}^{s}}< \infty \bigr\} , $$

here \(\mathcal{S}'/ \mathcal{P}\) denotes the space of tempered distributions modulus polynomials and

$$\Vert u\Vert _{\dot{F}_{p,q}^{s}}= \bigl\Vert \bigl\Vert \bigl(2^{js}\dot { \Delta}_{j}u\bigr)_{j \in\mathbb{Z}}\bigr\Vert _{l^{q}} \bigr\Vert _{{L^{p}}(\mathbb{R}^{N})}. $$

The nonhomogeneous Triebel-Lizorkin space \({F}_{p,q}^{s}(\mathbb{R}^{N})\) is defined by

$$F_{p,q}^{s}\bigl(\mathbb{R}^{N}\bigr)=\bigl\{ u \in \mathcal{S}'\bigl(\mathbb{R}^{N}\bigr),\Vert u\Vert _{{F}_{p,q}^{s}}< \infty \bigr\} $$

with

$$\Vert u\Vert _{F_{p,q}^{s}}\bigl(\mathbb{R}^{N}\bigr)= \big\Vert \big\Vert \bigl(2^{js}\Delta_{j}u\bigr)_{j \geq-1} \big\Vert _{l^{q}} \big\Vert _{{L^{p}}(\mathbb{R}^{N})}. $$

Remark 2.1

We point out that if \(s>0\), we have \(F_{p,q}^{s}(\mathbb{R}^{N})=\dot{F}_{p,q}^{s}(\mathbb{R}^{N})\cap L^{p}(\mathbb{R}^{N})\), then by the definition of the nonhomogeneous Triebel-Lizorkin space, the Minkowski inequality, and the fact that \(\Vert \Delta_{-1}u\Vert _{L^{p}}\leq C\Vert u\Vert _{L^{p}}\), we get

$$\begin{aligned} \Vert u\Vert _{F_{p,q}^{s}} \approx&\Vert u\Vert _{\dot{F}_{p,q}^{s}}+ \Vert u\Vert _{L^{p}} \\ \approx& \Vert u\Vert _{\dot{F}_{p,q}^{s}}+\Vert \Delta _{-1}u \Vert _{L^{p}}. \end{aligned}$$

Remark 2.2

(Chae [13])

If \(s>\frac {N}{p}\), \(F_{p,q}^{s}(\mathbb{R}^{N})\hookrightarrow L^{\infty}(\mathbb {R}^{N})\), \(p,q \in[1,\infty]\).

The following space-time Triebel-Lizorkin space will play an important role in the proof of Theorem 1.1.

Definition 2.2

Let \(s\in\mathbb{R}\), \(p, q, r \in [1,\infty]\), \(I\subset\mathbb{R}\) be an interval. The homogeneous space-time Triebel-Lizorkin space \(\tilde{L}^{r}(I; \dot {F}_{p,q}^{s}(\mathbb{R}^{N}))\) is the set of all distributions satisfying

$$\Vert u\Vert _{\tilde{L}^{r}(I; \dot{F}_{p,q}^{s})}= \big\Vert \big\Vert \bigl(2^{js}\Vert\dot{ \Delta}_{j}u\Vert_{L_{t}^{r}(I)}\bigr)_{j \in \mathbb{Z}} \big\Vert _{l^{q}} \big\Vert _{L^{p}}< \infty. $$

We can also define the inhomogeneous space-time Triebel-Lizorkin space \(\tilde{L}^{r}(I; F_{p,q}^{s}(\mathbb{R}^{N}))\). By Remark 2.1, if \(s>0\),

$$\begin{aligned} \Vert u\Vert _{\tilde{L}^{r}(I; F_{p,q}^{s})} \approx& \Vert u\Vert _{\tilde{L}^{r}(I;\dot{F}_{p,q}^{s})}+ \Vert u\Vert _{L^{r}_{t}(I;L^{p})} \\ \approx& \Vert u\Vert _{\tilde{L}^{r}(I;\dot {F}_{p,q}^{s})}+\Vert \Delta_{-1}u \Vert _{L^{r}_{t}(I;L^{p})}. \end{aligned}$$

For simplicity, we use \(\tilde{L}^{r}_{t}\dot{F}_{p,q}^{s}\), \(\tilde{L}^{r}\dot {F}_{p,q}^{s}\) to denote \(\tilde{L}^{r}(0, t; \dot{F}_{p,q}^{s})\) and \(\tilde {L}^{r}(0, \infty; \dot{F}_{p,q}^{s})\), respectively. For a locally integrable function f, the Hardy-Littlewood maximal function \(\mathcal {M}f\) is defined by

$$\mathcal{M}f(x)=\sup_{r>0}\frac{1}{\vert \mathcal{B}(x,r)\vert } \int_{\mathcal{B}(x,r)}\bigl\vert f(y)\bigr\vert \,dy, $$

where \(\vert \mathcal{B}(x,r)\vert \) denotes the volume of the ball \(\mathcal{B}(x,r)\) with center x and radius r.

The following vector-valued maximal inequality, which can be found in [21], plays a fundamental tool in the proof of product estimate.

Lemma 2.1

(Vector-valued maximal inequality)

Let \(1 < p < \infty\), \(1\leq q \leq\infty\), and \(\{u_{j}\}_{j \in\mathbb{Z}}\) be a sequence of functions in \(L^{p}(l^{q})\). Then we have

$$\big\Vert \Vert\mathcal{M}u_{j}\Vert_{l^{q}} \big\Vert _{L^{p}} \lesssim \big\Vert \Vert u_{j}\Vert_{l^{q}} \big\Vert _{L^{p}}. $$

The following lemma is proved by Stein [22].

Lemma 2.2

Let ϕ be an integrable function on \(\mathbb{R}^{N}\) and the least decreasing radial majorant of ϕ be integrable, i.e.,

$$\int_{\mathbb{R}^{N}}\sup_{\vert y\vert \geq \vert x\vert }\bigl\vert \phi(y) \bigr\vert \,dx = A < \infty. $$

Then for any \(u \in L^{p}(\mathbb{R}^{N})\), \(1\leq p \leq\infty\), we have

$$\sup_{\epsilon> 0}\epsilon^{N}\bigl\vert \bigl(u\ast\phi( \epsilon\cdot )\bigr) (x)\bigr\vert \leq A\mathcal{M}u(x). $$

Lemma 2.3

(Frazier-Torres-Weiss [23])

The Calderón-Zygmund singular integral operator is bounded from the Triebel-Lizorkin space \(F_{p,q}^{s}\) into itself.

Using Lemma 2.3, we can control u constantly by θ modulus multiplication by a constant in the space \(F_{p,q}^{s}\).

Finally, let us recall the maximum principle.

Lemma 2.4

Let θ be the smooth solution to the Cauchy problem (1.1) with \(\alpha\in(0,2)\). Then we have

$$ \bigl\Vert \theta(t)\bigr\Vert _{L^{p}}\leq\bigl\Vert \theta(0)\bigr\Vert _{L^{p}}, \quad 1\leq p\leq\infty. $$
(2.9)

Proof

Hmidi and Keraani [8] established a maximum principle (2.9) for the quasi-geostrophic equation and the result does not depend on the space dimension. Following the idea of proof in [8] we can prove that (2.9) holds also for the 3D incompressible porous media equation similarly. Here we omit it. □

Remark 2.3

We can get an explicit decay estimates of the \(L^{p}\) norm in θ using the methods developed by Córdoba and Córdoba [24], however, the boundedness is enough for the proof of Theorem 1.1.

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We divide the proof into four steps.

Step 1. A priori estimates. Firstly, we rewrite (1.1) in the following integral form:

$$ \theta(t)= e^{-\nu t\Lambda}\theta_{0} - \int_{0}^{t}e^{-(t-s)\nu\Lambda }\nabla\cdot(u\theta) (s)\,ds, $$
(3.1)

where we have used the fact that \(\nabla\cdot u=0\).

Then localizing (3.1) through the Fourier localization operator \(\dot{\Delta}_{j}\) and using estimates in Lemma A.2 in the Appendix, we get

$$\begin{aligned} \bigl\vert \dot{\Delta}_{j}\theta(t,x)\bigr\vert \lesssim e^{-c\nu t2^{j}}\mathcal{M}(\dot{\Delta}_{j} \theta_{0}) (x)+ \int_{0}^{t}e^{-c\nu (t-s)2^{j}}2^{j} \mathcal{M}\bigl(\dot{\Delta}_{j}(u\theta)\bigr) (s,x)\,ds. \end{aligned}$$
(3.2)

Taking \(L^{\infty}\), \(L^{1}\) norm, respectively, with respect to t on both sides of (3.2) and using Young’s inequality give

$$\begin{aligned}& \bigl\Vert \dot{\Delta}_{j}\theta(\cdot,x)\bigr\Vert _{L_{t}^{\infty}}\lesssim\mathcal{M}(\dot{\Delta}_{j} \theta_{0}) (x) +2^{j}\bigl\Vert \mathcal{M}\bigl(\dot{ \Delta}_{j}(u\theta)\bigr) (\cdot,x)\bigr\Vert _{L_{t}^{1}}, \end{aligned}$$
(3.3)
$$\begin{aligned}& \bigl\Vert \dot{\Delta}_{j}\theta(\cdot,x)\bigr\Vert _{L_{t}^{1}}\lesssim \frac{1}{\nu}2^{-j}\mathcal{M}(\dot{ \Delta}_{j}\theta_{0}) (x) +\frac{1}{\nu}\bigl\Vert \mathcal{M}\bigl(\dot{\Delta}_{j}(u\theta)\bigr) (\cdot ,x)\bigr\Vert _{L_{t}^{1}}. \end{aligned}$$
(3.4)

Multiplying \(2^{js}\) on both sides of (3.3), taking \(l^{q}(\mathbb{Z})\) norm, then taking \(L^{p}\) norm, we get

$$\begin{aligned} \Vert \theta \Vert _{\tilde{L}^{\infty}\dot {F}_{p,q}^{s}} \lesssim& \Vert \theta_{0} \Vert _{\dot {F}_{p,q}^{s}}+\Vert u\theta \Vert _{\tilde{L}^{1}\dot{F}_{p,q}^{s+1}}, \end{aligned}$$

due to the Lemma 2.1, using the product estimate in Lemma A.1 we obtain

$$\begin{aligned} \Vert \theta \Vert _{\tilde{L}^{\infty}\dot {F}_{p,q}^{s}} \lesssim& \Vert \theta_{0} \Vert _{\dot{F}_{p,q}^{s}} +\Vert u\Vert _{\tilde{L}^{\infty}_{t}L^{\infty}_{x}}\Vert \theta \Vert _{\tilde{L}^{1}_{t} \dot{F}_{p,q}^{s+1}}+\Vert \theta \Vert _{\tilde{L}^{\infty}_{t}L^{\infty}_{x}}\Vert u\Vert _{\tilde{L}^{1}_{t} \dot{F}_{p,q}^{s+1}} \\ \lesssim& \Vert \theta_{0}\Vert _{\dot{F}_{p,q}^{s}} +\Vert u \Vert _{\tilde{L}^{\infty}_{t}F_{p,q}^{s}}\Vert \theta \Vert _{\tilde{L}^{1}_{t} \dot{F}_{p,q}^{s+1}}+\Vert \theta \Vert _{\tilde{L}^{\infty}_{t}F_{p,q}^{s}}\Vert u\Vert _{\tilde{L}^{1}_{t} \dot{F}_{p,q}^{s+1}}, \end{aligned}$$

according to the property of the Calderón-Zygmund singular integral operator in Lemma 2.3 we get

$$\begin{aligned} \Vert \theta \Vert _{\tilde{L}^{\infty}_{t} \dot {F}_{p,q}^{s}}\lesssim \Vert \theta_{0}\Vert _{\dot {F}_{p,q}^{s}}+\Vert \theta \Vert _{\tilde{L}^{1}_{t}\dot {F}_{p,q}^{s+1}}\Vert \theta \Vert _{\tilde{L}^{\infty}_{t} F_{p,q}^{s}}. \end{aligned}$$
(3.5)

Similarly to (3.5), we get

$$ \nu \Vert \theta \Vert _{\tilde{L}^{1}_{t} \dot {F}_{p,q}^{s+1}}\lesssim \Vert \theta_{0}\Vert _{\dot {F}_{p,q}^{s}}+\Vert \theta \Vert _{\tilde{L}^{1}_{t}\dot{F}_{p,q}^{s+1}} \Vert \theta \Vert _{\tilde{L}^{\infty}_{t} F_{p,q}^{s}}. $$
(3.6)

Combining (3.5), (3.6), and using Lemma 2.4, we get

$$ \Vert \theta \Vert _{\tilde{L}^{\infty}_{t} F_{p,q}^{s}} + \nu \Vert \theta \Vert _{\tilde{L}^{1}_{t} \dot {F}_{p,q}^{s+1}}\lesssim \Vert \theta_{0}\Vert _{F_{p,q}^{s}}+ \Vert \theta \Vert _{\tilde{L}^{1}_{t}\dot {F}_{p,q}^{s+1}}\Vert \theta \Vert _{\tilde{L}^{\infty}_{t} F_{p,q}^{s}}. $$
(3.7)

Step 2. Approximate solutions and uniform estimates. We construct the following successive approximate sequence \(\{\theta^{n}\}\):

$$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad}l}\partial_{t}\theta^{n+1}+u^{n}\cdot\nabla\theta^{n+1}+\nu \Lambda\theta^{n+1}=0,& x\in\mathbb{R}^{3}, t>0,\\ u^{n}=\mathcal{C}(\theta^{n})+\mathcal{S}(\theta^{n}),& x\in\mathbb{R}^{3}, t>0,\\ \operatorname{div}u^{n} = 0,\\ \theta^{n+1}(0,x)=S_{n+2}\theta_{0}, \end{array}\displaystyle \right . \end{aligned}$$
(3.8)

where \(S_{j}\) (\(j\geq0\)) are low-frequency cut-off operators which are defined similarly by (2.5):

$$\begin{aligned} S_{j}u=\chi\bigl(2^{-j}D\bigr)u,\quad j \in\mathbb{N}\cup{0}. \end{aligned}$$

Setting \((\theta^{0},u^{0})=(0,0)\), and solving the linear system, we can find \(\{\theta^{n}, u^{n}\}_{n\in\mathbb{N}}\) for all \(n\in\mathbb{N}\). As in Step 1, we can deduce that

$$\begin{aligned}& \bigl\Vert \theta^{n+1}\bigr\Vert _{\tilde{L}^{\infty}_{t} F_{p,q}^{s}} + \nu\bigl\Vert \theta^{n+1}\bigr\Vert _{\tilde{L}^{1}_{t} \dot {F}_{p,q}^{s+1}} \\& \quad\leq C \bigl(\bigl\Vert \theta_{0}^{n+1}\bigr\Vert _{F_{p,q}^{s}}+\bigl\Vert \theta^{n}\bigr\Vert _{\tilde{L}^{1}_{t}\dot{F}_{p,q}^{s+1}} \bigl\Vert \theta^{n+1}\bigr\Vert _{\tilde{L}^{\infty}_{t} F_{p,q}^{s}} +\bigl\Vert \theta^{n}\bigr\Vert _{\tilde{L}^{\infty}_{t} F_{p,q}^{s}}\bigl\Vert \theta^{n+1}\bigr\Vert _{\tilde{L}^{1}_{t}\dot{F}_{p,q}^{s+1}} \bigr). \end{aligned}$$
(3.9)

If we take \(\epsilon>0\), such that \(\Vert \theta_{0}\Vert _{F_{p,q}^{s}}\leq\epsilon\), \(\epsilon\leq\frac{\nu}{4C^{2}}\), then we claim that, for all \(n\in\mathbb{N}\),

$$ \bigl\Vert \theta^{n}\bigr\Vert _{\tilde{L}^{\infty}F_{p,q}^{s}} + \nu\bigl\Vert \theta^{n}\bigr\Vert _{\tilde{L}^{1} \dot{F}_{p,q}^{s+1}}\leq2C\Vert \theta_{0}\Vert _{F_{p,q}^{s}}. $$
(3.10)

In fact, assume that

$$\bigl\Vert \theta^{n}\bigr\Vert _{\tilde{L}^{\infty}F_{p,q}^{s}} + \nu\bigl\Vert \theta^{n}\bigr\Vert _{\tilde{L}^{1} \dot{F}_{p,q}^{s+1}}\leq2C\Vert \theta_{0}\Vert _{F_{p,q}^{s}}. $$

It follows from (3.9) that

$$\begin{aligned}& \bigl\Vert \theta^{n+1}\bigr\Vert _{\tilde{L}^{\infty}_{t} F_{p,q}^{s}} + \nu\bigl\Vert \theta^{n+1}\bigr\Vert _{\tilde{L}^{1}_{t} \dot {F}_{p,q}^{s+1}} \\& \quad\leq C\Vert \theta_{0}\Vert _{F_{p,q}^{s}} + \frac{C}{\nu} \bigl(\bigl\Vert \theta^{n}\bigr\Vert _{\tilde{L}^{\infty}_{t} F_{p,q}^{s}}+\nu \bigl\Vert \theta^{n}\bigr\Vert _{\tilde{L}^{1}_{t} \dot{F}_{p,q}^{s+1}} \bigr) \bigl(\bigl\Vert \theta^{n+1}\bigr\Vert _{\tilde{L}^{\infty}_{t} F_{p,q}^{s}}+\nu\bigl\Vert \theta^{n+1}\bigr\Vert _{\tilde{L}^{1}_{t} \dot {F}_{p,q}^{s+1}} \bigr) \\& \quad\leq C\Vert \theta_{0}\Vert _{F_{p,q}^{s}}+\frac{1}{2} \bigl(\bigl\Vert \theta^{n+1}\bigr\Vert _{\tilde{L}^{\infty}F_{p,q}^{s}} + \nu\bigl\Vert \theta^{n+1}\bigr\Vert _{\tilde{L}^{1} \dot{F}_{p,q}^{s+1}} \bigr), \end{aligned}$$

which implies (3.10).

Step 3. Compactness arguments and existence. We will show that the sequence \(\{\theta^{n}\}\) has a subsequence converging to a solution of the Cauchy problem (1.1) in \(\mathcal{D}'(\mathbb{R}^{+}\times\mathbb{R}^{3})\). The proof is based on compactness arguments.

Firstly, we show that \(\partial_{t}\theta^{n}\) is uniformly bounded in space-time Triebel-Lizorkin \(L_{t}^{\infty}(F_{p,q}^{s-1})\). By (3.8), we have

$$\begin{aligned} \bigl\Vert \partial_{t}\theta^{n+1}\bigr\Vert _{F_{p,q}^{s-1}} \leq& \bigl\Vert \nabla\cdot\bigl(u^{n} \theta^{n+1}\bigr)\bigr\Vert _{F_{p,q}^{s-1}}+\nu \bigl\Vert \Lambda \theta^{n+1}\bigr\Vert _{F_{p,q}^{s-1}} \\ \leq& \bigl\Vert u^{n}\theta^{n+1}\bigr\Vert _{F_{p,q}^{s}}+\nu\bigl\Vert \theta^{n+1}\bigr\Vert _{F_{p,q}^{s}}, \end{aligned}$$

due to the fact that \(F_{p,q}^{s}\) (\(s>\frac{3}{p}\)) is a Banach algebra and the property of the Calderón-Zygmund singular integral operator in Lemma 2.3,

$$\begin{aligned} \bigl\Vert \partial_{t}\theta^{n+1}\bigr\Vert _{F_{p,q}^{s-1}} \leq& \bigl\Vert u^{n}\bigr\Vert _{F_{p,q}^{s}}\bigl\Vert \theta^{n+1}\bigr\Vert _{F_{p,q}^{s}}+ \nu\bigl\Vert \theta^{n+1}\bigr\Vert _{F_{p,q}^{s}} \\ \leq& C\bigl\Vert \theta^{n}\bigr\Vert _{F_{p,q}^{s}}\bigl\Vert \theta ^{n+1}\bigr\Vert _{F_{p,q}^{s}}+\nu\bigl\Vert \theta^{n+1}\bigr\Vert _{F_{p,q}^{s}}. \end{aligned}$$
(3.11)

On the other hand, since \(\tilde{L}^{\infty}F_{p,q}^{s} \hookrightarrow L^{\infty}F_{p,q}^{s}\), (3.10) and (3.11) imply that

$$\begin{aligned} \bigl\Vert \partial_{t}\theta^{n+1}\bigr\Vert _{L^{\infty}F_{p,q}^{s-1}}< \infty. \end{aligned}$$
(3.12)

Now let us turn to the proof of the existence. We note that for any \(\psi\in\mathcal{S}(\mathbb{R}^{3})\), the map \(u\longmapsto\psi u\) is compact from \(H_{p}^{s}\) into \(H_{p}^{t}\) for \(s>t\), \(p< \infty\), together with the Sobolev embedding

$$F_{p,q}^{s} \hookrightarrow F_{p,2}^{s-\epsilon}=H_{p}^{s-\epsilon } \hookrightarrow L^{p},\quad\forall s>\epsilon, \epsilon>0, $$

we thus get the map \(u\longmapsto\psi u\) is compact from \(F_{p,q}^{s}(\mathbb{R}^{3})\) into \(L^{p}(\mathbb{R}^{3})\). Thus by the Lions-Aubin compactness theorem, we can conclude that there exist a subsequence \(\{\theta^{n_{k}}\}\) and a function θ such that

$$\begin{aligned} \lim_{k \rightarrow\infty}\theta^{n_{k}}= \theta \quad \mbox{in } L_{\mathrm{loc}}^{P}\bigl(R^{+} \times\mathbb{R}^{3}\bigr). \end{aligned}$$

Moreover, the uniform estimate (3.10) allows us to conclude that \(\theta(t,x)\in\tilde{L}^{\infty}F_{p,q}^{s} \cap \tilde{L}^{1}\dot {F}_{p,q}^{s+1}\), and

$$ \Vert \theta \Vert _{\tilde{L}^{\infty}F_{p,q}^{s}}+\nu \Vert \theta \Vert _{\tilde{L}^{1} \dot{F}_{p,q}^{s+1}}\leq2C\Vert \theta_{0}\Vert _{F_{p,q}^{s}}. $$
(3.13)

Finally, by a standard limit argument, we can prove that the limit function \(\theta(t,x)\) satisfies the Cauchy problem (1.1) in the sense of distribution.

We still have to prove that \(\theta(t,x)\in\mathcal{C}(0,\infty; F_{p,q}^{s})\). From the definition of the Triebel-Lizorkin space and the Minkowski inequality we have

$$\begin{aligned} \bigl\Vert \theta(t)-\theta\bigl(t'\bigr)\bigr\Vert _{F_{p,q}^{s}} \leq&\biggl\Vert \biggl(\sum_{j< N}2^{jsq} \bigl\vert \Delta_{j}\theta(t)-\Delta_{j}\theta \bigl(t'\bigr)\bigr\vert ^{q}\biggr)^{\frac{1}{q}}\biggr\Vert _{L^{p}} \\ &{}+2\biggl\Vert \biggl(\sum_{j\geq N}2^{jsq} \Vert \Delta_{j}\theta\Vert _{L_{t}^{\infty}}^{q} \biggr)^{\frac{1}{q}}\biggr\Vert _{L^{p}}, \quad\forall N\in\mathbb{N}. \end{aligned}$$

From (3.13), for \(\epsilon>0\), there exists a number \(N_{0}\in \mathbb{N}\) such that

$$\begin{aligned} \biggl\Vert \biggl(\sum_{j\geq N_{0}}2^{jsq} \Vert \Delta_{j}\theta\Vert _{L_{t}^{\infty}}^{q} \biggr)^{\frac{1}{q}}\biggr\Vert _{L^{p}}\leq\frac{\epsilon}{4}, \end{aligned}$$

while

$$\begin{aligned} \biggl\Vert \biggl(\sum_{j< {N_{0}}}2^{jsq} \bigl\vert \Delta_{j}\theta(t)-\Delta _{j}\theta \bigl(t'\bigr)\bigr\vert ^{q}\biggr)^{\frac{1}{q}}\biggr\Vert _{L^{p}} \lesssim& \bigl\vert t-t'\bigr\vert \cdot\biggl\Vert \biggl(\sum_{j< {N_{0}}}2^{jsq} \Vert \partial_{t}\Delta_{j}\theta \Vert_{L_{\mathbb {R}^{+}}^{\infty}}^{q}\biggr)^{\frac{1}{q}} \biggr\Vert _{L^{p}} \\ \lesssim&\bigl\vert t-t'\bigr\vert 2^{N_{0}}\Vert \partial_{t}\theta \Vert _{\tilde{L}^{\infty}F_{p,q}^{s-1}}. \end{aligned}$$

Equation (3.12) allows us to finish the proof of continuity in time, that is, \(\theta(t,x)\in\mathcal{C}(0,\infty; F_{p,q}^{s})\).

Step 4. Uniqueness. Assume that \(\theta'(t,x)\in\tilde{L}^{\infty}F_{p,q}^{s} \cap\tilde {L}^{1}\dot{F}_{p,q}^{s+1}\) is another solution of the Cauchy problem (1.1) with the same initial data \(\theta_{0}(x)\).

Let \(\delta\theta= \theta-\theta'\) and \(\delta u=u-u'\), then \((\delta \theta,\delta u)\) satisfies the following Cauchy problem:

$$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad}l}\partial_{t} \delta\theta+ u \cdot\nabla\delta\theta +\nu\Lambda\delta\theta= -\delta u \cdot\nabla\theta',& x\in\mathbb {R}^{3}, t>0,\\ \operatorname{div} u=0,\\ \delta\theta(0,x)=0. \end{array}\displaystyle \right . \end{aligned}$$
(3.14)

Following the same procedure of estimate leading to (3.7), by Lemma A.1 in the Appendix and Lemma 2.3 we can obtain

$$\begin{aligned}& \Vert \delta\theta \Vert _{\tilde{L}^{\infty}_{T}\dot {F}_{p,q}^{s}}+\nu \Vert \delta \theta \Vert _{\tilde{L}^{1}_{T}\dot {F}_{p,q}^{s+1}} \\& \quad\lesssim \Vert u\cdot\delta\theta \Vert _{\tilde{L}^{1}_{T}\dot {F}_{p,q}^{s+1}} + \bigl\Vert \delta u\cdot\theta'\bigr\Vert _{\tilde {L}^{1}_{T}\dot{F}_{p,q}^{s+1}} \\& \quad\lesssim \Vert u\Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}\Vert \delta\theta \Vert _{\tilde{L}^{1}_{T}\dot{F}_{p,q}^{s+1}}+ \Vert \delta\theta \Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}\Vert u\Vert _{\tilde{L}^{1}_{T}\dot{F}_{p,q}^{s+1}} \\& \qquad{}+\Vert \delta u\Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}\bigl\Vert \theta' \bigr\Vert _{\tilde{L}^{1}_{T}\dot{F}_{p,q}^{s+1}}+ \bigl\Vert \theta'\bigr\Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}\Vert \delta u\Vert _{\tilde{L}^{1}_{T}\dot{F}_{p,q}^{s+1}} \\& \quad\lesssim \Vert \delta\theta \Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}\bigl(\Vert \theta \Vert _{\tilde{L}^{1}_{T}\dot {F}_{p,q}^{s+1}}+\bigl\Vert \theta'\bigr\Vert _{\tilde{L}^{1}_{T}\dot {F}_{p,q}^{s+1}}\bigr) \\& \qquad{}+\Vert \delta\theta \Vert _{\tilde{L}^{1}_{T}\dot {F}_{p,q}^{s+1}}\bigl(\Vert \theta \Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}+\bigl\Vert \theta'\bigr\Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}\bigr). \end{aligned}$$
(3.15)

In order to get the estimates in the inhomogeneous mixed time-space Triebel-Lizorkin space, it remains to estimate \(\Vert \Delta _{-1}(\delta\theta)\Vert _{L_{T}^{\infty}L_{x}^{p}}\). To do this, we apply the operator \(\Delta_{-1}\) on both sides of (3.14). Modifying slightly the proof of Proposition 6.2 in [8], together with the maximum principle, Bernstein’s inequality [19], and Hölder’s inequality yield

$$\begin{aligned} \bigl\Vert \Delta_{-1}(\delta\theta)\bigr\Vert _{L_{T}^{\infty}L_{x}^{p}} \leq & \int_{0}^{T}\bigl\Vert \Delta_{-1} \bigl(\delta u\cdot\nabla\theta'+u\cdot\nabla \delta\theta\bigr) \bigr\Vert _{L^{p}}\,dt \\ \leq& \int_{0}^{T}\bigl\Vert \nabla\cdot \Delta_{-1}\bigl(\theta'\delta u +u\delta \theta\bigr) \bigr\Vert _{L^{p}}\,dt \\ \lesssim& \int_{0}^{T}\bigl\Vert \theta' \delta u +u\delta\theta\bigr\Vert _{L^{p}}\,dt, \end{aligned}$$

thus the property of Calderón-Zygmund singular integral operator in Lemma 2.3 and the Sobolev embedding \(F_{p,q}^{s}\hookrightarrow L^{p}\) (\(s>0\)) imply that

$$\begin{aligned} \bigl\Vert \Delta_{-1}(\delta\theta)\bigr\Vert _{L_{T}^{\infty}L_{x}^{p}} \lesssim& \int_{0}^{T}\bigl(\Vert u\Vert _{L_{x}^{\infty}} \Vert \delta\theta \Vert _{L^{p}}+\Vert \delta u\Vert _{L^{p}}\bigl\Vert \theta'\bigr\Vert _{L^{\infty}_{x}} \bigr)\,dt \\ \lesssim& T\bigl(\Vert \theta \Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}+\bigl\Vert \theta'\bigr\Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}\bigr)\Vert \delta\theta \Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}. \end{aligned}$$
(3.16)

Combining (3.15) and (3.16), we get

$$\begin{aligned} \Vert \delta\theta \Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}+\Vert \delta\theta \Vert _{\tilde{L}^{1}_{T}\dot {F}_{p,q}^{s+1}} \leq& C \bigl(\Vert \delta\theta \Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}+ \Vert \delta\theta \Vert _{\tilde{L}^{1}_{T}\dot {F}_{p,q}^{s+1}} \bigr) \\ &{} \cdot\bigl(\Vert \theta \Vert _{\tilde{L}^{1}_{T}\dot {F}_{p,q}^{s+1}}+(1+T) \bigl(\Vert \theta \Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}+\bigl\Vert \theta'\bigr\Vert _{\tilde{L}^{\infty}_{T} F_{p,q}^{s}}\bigr)+\bigl\Vert \theta'\bigr\Vert _{\tilde{L}^{1}_{T}\dot {F}_{p,q}^{s+1}} \bigr). \end{aligned}$$

Since \(\theta(t,x)\), \(\theta'(t,x)\) satisfy (3.13), if ϵ and T have been chosen small enough then it follows that \(\delta\theta (t,x)=0\) on \([0,T]\times\mathbb{R}^{3}\). By a standard continuation argument, we can show that \(\delta\theta(t,x)=0\) in \([0,\infty)\times \mathbb{R}^{3}\), i.e. \(\theta(t,x)=\theta'(t,x)\).

This completes the proof of Theorem 1.1.