1 Introduction

Inspired by the work of Bitsadze and Samarskii [1] on nonlocal elliptic boundary value problems, Il’in and Moiseev [2, 3] initiated the study of nonlocal boundary value problems for second-order ordinary differential equations. Nonlocal boundary value problems constitute an important area of research as such problems find their applications in chemical engineering, thermo-elasticity, underground water flow, and population dynamics; for details and examples, see [4, 5]. For a variety of interesting results on nonlocal boundary value problems, we refer the reader to the works [621] and the references cited therein. Self-adjoint differential equations are found to be of great interest in certain disciplines, for example, see [2225]. In [26], a self-adjoint coupled system of nonlinear ordinary differential equations with nonlocal multi-point boundary conditions was studied. In a recent article [27], the authors established existence results for a self-adjoint coupled system of nonlinear second-order ordinary differential equations complemented with nonlocal nonseparated integral boundary conditions.

The aim of the present paper is to consider and investigate the existence of solutions for the multivalued case of the problem discussed in [27]. In precise terms, we consider a self-adjoint coupled system of second-order ordinary differential inclusions on an arbitrary domain, subject to the nonlocal nonseparated integral coupled boundary conditions given by

$$ \textstyle\begin{cases} (p(t)u'(t) )'\in \mu _{1} F(t,u(t),v(t)),\quad t \in [a,b], \\ (q(t)v'(t) )'\in \mu _{2} G(t,u(t),v(t)), \quad t \in [a,b], \\ \alpha _{1} u(a)+ \alpha _{2} u(b) =\lambda _{1} \int _{a}^{ \eta }v(s)\,ds, \qquad \alpha _{3} u'(a)+ \alpha _{4} u'(b) =\lambda _{2} \int _{a}^{\eta }v'(s)\,ds, \\ \beta _{1} v(a)+ \beta _{2} v(b) =\lambda _{3} \int _{ \xi}^{b} u(s)\,ds, \qquad \beta _{3} v'(a)+ \beta _{4} v'(b) =\lambda _{4} \int _{\xi}^{b} u'(s)\,ds, \end{cases} $$
(1.1)

where \(a<\eta <\xi <b\), \(p, q \in C([a,b], \mathbb{R}^{+})\), \(\alpha _{i}\), \(\beta _{i}\), \(\lambda _{i} \in \mathbb{R}^{+}\), \(i =1, 2, 3, 4\), \(\mu _{j} \in \mathbb{R}^{+}\), \(j=1, 2\), and \(F,G:[a,b]\times \mathbb{R} \times \mathbb{R} \longrightarrow \mathcal{P}(\mathbb{R})\) are given multivalued maps, \(\mathcal{P}(\mathbb{R})\) is the family of all nonempty subsets of \(\mathbb{R}\).

We establish existence criteria for the solutions of problem (1.1) for convex and nonconvex valued multivalued maps F and G by applying the nonlinear alternative of Leray–Schauder for multivalued maps in the convex case and Covitz and Nadler’s fixed point theorem for contractive multivalued maps in the nonconvex case, respectively. The tools of the fixed point theory employed in our analysis are standard, however their application to problem (1.1) is new. We emphasize that the results derived in this paper are new and enrich the literature on self-adjoint multivalued nonlocal boundary value problems.

The rest of the paper is organized as follows. We present background material about multivalued analysis in Sect. 2, while the main results are presented in Sect. 3. Numerical examples illustrating the obtained results are constructed in Sect. 4.

2 Preliminaries

We begin this section by reviewing some basic definitions, lemmas, and theorems on multivalued maps from [28, 29] which are related to the study of problem (1.1).

Let \((\mathcal{X}, \|\cdot \|)\) be a normed space. We denote the classes of all closed, bounded, compact, and compact and convex sets in \(\mathcal{X}\) by \({\mathcal{P}}_{cl}\), \({\mathcal{P}}_{b}\), \({\mathcal{P}}_{cp}\), and \({\mathcal{P}}_{cp,c}\), respectively.

A multivalued map \(F : \mathcal{X} \to {\mathcal{P}}(\mathcal{X})\) is (a) convex (closed) valued if \(F(x)\) is convex (closed) for all \(x \in \mathcal{X}\); (b) upper semicontinuous (u.s.c.) on \(\mathcal{X}\) if for each \(x_{0} \in \mathcal{X}\), the set \(F(x_{0})\) is a nonempty closed subset of \(\mathcal{X}\), and if for each open set \(\mathcal{N}\) of \(\mathcal{X}\) containing \(F(x_{0})\), there exists an open neighborhood \(\mathcal{N}_{0}\) of \(x_{0}\) such that \(F(\mathcal{N}_{0}) \subseteq \mathcal{N}\); (c) bounded on bounded sets if \(F(\mathbb{B}) = \bigcup_{x \in \mathbb{B}}F(x)\) is bounded in \(\mathcal{X}\) for all \(\mathbb{B} \in {\mathcal {P}}_{b}(\mathcal{X})\) (i.e. \(\sup_{x \in \mathbb{B}}\{\sup \{|y| : y \in F(x)\}\} < \infty )\); (d) completely continuous if \(F(\mathbb{B})\) is relatively compact for every \(\mathbb{B} \in {\mathcal {P}}_{b}(\mathcal{X})\). F has a fixed point if there is \(x\in \mathcal{X}\) such that \(x \in F(x)\).

A multivalued map \(F : W \to {\mathcal {P}}_{cl}({\mathbb{R}})\) is said to be measurable if, for every \(b \in {\mathbb{R}}\), the function \(t \longmapsto d(b,F(t)) = \inf \{|b-c|: c \in F(t)\}\) is measurable. We define the graph of F to be the set \({\mathit{{Fr}}}(F)=\{(x,y)\in X \times Y, y\in F(x)\}\). The fixed point set of the multivalued operator F will be denoted by FixF.

Remark 2.1

(The relationship between closed graphs and upper-semicontinuity)

If \(F : \mathcal{X} \to \mathcal{P}_{cl}(\mathcal{X})\) is u.s.c., then \({\mathit{{Fr}}}(F)\) is a closed subset of \(X \times Y \) i.e. for every sequence \(\{x_{n}\}_{n \in \mathbb{N}} \subset \mathcal{X}\) and \(\{y_{n}\}_{n \in \mathbb{N}} \subset \mathcal{X}\), if when \(n \to \infty \), \(x_{n} \to x_{*}\), \(y_{n} \to y_{*}\), and \(y_{n} \in F(x_{n})\), then \(y_{*} \in F(x_{*})\). Conversely, if F is completely continuous and has a closed graph, then it is upper semi-continuous.

Definition 2.2

A multivalued map \(F : [a,b] \times \mathbb{R}^{2} \to {\mathcal{P}}(\mathbb{R})\) is said to be Carathéodory if

  1. (i)

    \(t \longmapsto F(t,u,v)\) is measurable for each \(u,v \in \mathbb{R}\);

  2. (ii)

    \((u,v) \longmapsto F(t,u,v)\) is upper semicontinuous for almost all \(t\in [a,b]\);

Further, a Carathéodory function F is called \(L^{1}\)-Carathéodory if

  1. (iii)

    for each \(\rho > 0\), there exists \(\Omega _{\rho} \in L^{1}([a,b],\mathbb{R}^{+})\) such that

    $$ \bigl\Vert F (t,u,v) \bigr\Vert = \sup \bigl\{ \vert x \vert : x \in F (t, u,v) \bigr\} \le \Omega _{\rho} (t)$$

    for all \(\|u\| ,\|v\| \le \rho \) and for a. e. \(t \in [a,b]\).

Definition 2.3

A function \((u,v) \in \mathcal{F} \times \mathcal{F}\), where \(\mathcal{F}= C^{2}([a,b],\mathbb{R})\), is a solution of the self-adjoint coupled system (1.1) if it satisfies the coupled conditions of (1.1) and there exist functions \(\hat{f},\hat{g}\in L^{1} ([a,b],\mathbb{R})\) such that \(\hat{f}(t) \in F (t,u(t),v(t))\), \(\hat{g}(t) \in G(t,u(t),v(t))\) a.e on \([a,b]\).

Let us now recall the following lemma from [27].

Lemma 2.4

For \(f_{1},g_{1} \in C([a,b], {\mathbb{R}})\) and \(R\neq 0\), \(E\neq 0\), the solution of the linear system

$$ \textstyle\begin{cases} (p(t)u'(t) )'=\mu _{1}f_{1}(t), \quad t\in [a,b], \\ (q(t)v'(t) )'=\mu _{2}g_{1}(t), \quad t\in [a,b], \\ \alpha _{1} u(a)+ \alpha _{2} u(b) =\lambda _{1} \int _{a}^{ \eta }v(s)\,ds, \qquad \alpha _{3} u'(a)+ \alpha _{4} u'(b) =\lambda _{2} \int _{a}^{\eta }v'(s)\,ds, \\ \beta _{1} v(a)+ \beta _{2} v(b) =\lambda _{3} \int _{ \xi}^{b} u(s)\,ds, \qquad \beta _{3} v'(a)+ \beta _{4} v'(b) = \lambda _{4} \int _{\xi}^{b} u'(s)\,ds, \end{cases} $$
(2.1)

can be expressed by the formulas:

$$\begin{aligned} u(t) =& \int _{a}^{t} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} f_{1}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} f_{1}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u}g_{1}(z)\,dz \biggr)\,du \,ds \\ &{}- \lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} g_{1}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}f_{1}(z)\,dz \biggr)\,du \,ds \biggr] \\ &{}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} f_{1}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} g_{1}(z)\,dz \,ds \biggr) \\ &{}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz -E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} g_{1}(z)\,dz \biggr)+ \biggl(- E_{2} \alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz \\ &{}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} f_{1}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$
(2.2)

and

$$\begin{aligned} v(t) =& \int _{a}^{t} \biggl(\frac{\mu _{2}}{q(u)} \int _{a}^{u} g_{1}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} f_{1}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u}g_{1}(z)\,dz \biggr)\,du \,ds \\ &{}- \beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} g_{1}(z)\,dz \biggr)\,du \\ &{}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}f_{1}(z)\,dz \biggr)\,du \,ds \biggr] \\ &{}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} f_{1}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} g_{1}(z)\,dz \,ds \biggr) \\ &{}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} g_{1}(z)\,dz \biggr)+ \biggl(- E_{2} \alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz \\ &{}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} f_{1}(z)\,dz \,ds \biggr) \biggr], \end{aligned}$$
(2.3)

where

$$\begin{aligned}& R = (\alpha _{1}+\alpha _{2}) (\beta _{1}+\beta _{2})-\lambda _{1} \lambda _{3}(\eta -a) (b-\xi ), \\& E = E_{1}E_{4}-E_{2}E_{3}, \\& E_{1} = \frac{\alpha _{3}}{p(a)}+\frac{\alpha _{4}}{p(b)}, \qquad E_{2}= \int _{a}^{\eta}\frac{\lambda _{2}}{q(s)}\,ds, \\& E_{3} = \int _{\xi}^{b} \frac{ \lambda _{4}}{p(s)}\,ds,\qquad E_{4}= \frac{\beta _{3}}{q(a)}+ \frac{\beta _{4}}{q(b)}. \end{aligned}$$
(2.4)

Let us consider the set of selection functions F and G for each \((u,v) \in \mathcal{F} \times \mathcal{F}\) defined by

$$ S_{F,(u,v)} := \bigl\{ \hat{f} \in L^{1} \bigl([a,b],\mathbb{R} \bigr) :\hat{f}(t) \in F \bigl(t,u(t),v(t) \bigr) \text{ for a.e. } t \in [a,b] \bigr\} $$

and

$$ S_{G,(u,v)} := \bigl\{ \hat{g} \in L^{1} \bigl([a,b],\mathbb{R} \bigr) : \hat{g}(t) \in G \bigl(t,u(t),v(t) \bigr) \text{ for a.e. } t \in [a,b] \bigr\} .$$

Define the operators \(\Theta _{1},\Theta _{2}:\mathcal{F} \times \mathcal{F} \to { \mathcal {P}}(\mathcal{F} \times \mathcal{F})\) by

$$\begin{aligned} \Theta _{1}(u,v) = &\bigl\{ h_{1} \in \mathcal{F} \times \mathcal{F}: \text{there exists } \hat{f} \in S_{F,(u,v)}, \hat{g} \in S_{G,(u,v)} \text{ such that} \\ &{} h_{1}(u,v) (t)= \mathcal{Z}_{1}(u,v) (t),\forall t \in [a,b] \bigr\} \end{aligned}$$
(2.5)

and

$$\begin{aligned} \Theta _{2}(u,v) =& \bigl\{ h_{2} \in \mathcal{F} \times \mathcal{F}: \text{there exists } \hat{f} \in S_{F,(u,v)}, \hat{g} \in S_{G,(u,v)} \text{ such that} \\ &{} h_{2}(u,v) (t)= \mathcal{Z}_{2}(u,v) (t),\forall t \in [a,b] \bigr\} , \end{aligned}$$
(2.6)

where

$$\begin{aligned}& \mathcal{Z}_{1}(u,v) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{1}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+ \beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{1}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{1}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{1}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{1}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{ f}_{1}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{1}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz -E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{1}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{1}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned}& \mathcal{Z}_{2}(u,v) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{1}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b- \xi ) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{1}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{1}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{1}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{1}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{1}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{1}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{1}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{1}(z)\,dz \,ds \biggr) \biggr]. \end{aligned}$$

Next, we introduce an operator \(\Theta : \mathcal{F} \times \mathcal{F} \to {\mathcal {P}}(\mathcal{F} \times \mathcal{F})\) as

Θ(u,v)(t)= ( Θ 1 ( u , v ) ( t ) Θ 2 ( u , v ) ( t ) ) ,

where \(\Theta _{1}\) and \(\Theta _{2}\) are defined by (2.5) and (2.6) respectively.

For the sake of computational convenience, we set the notation

$$ \mathcal{E}_{1}= \mathcal{D}_{1}+ \mathcal{D}_{3}, \qquad \mathcal{E}_{2}= \mathcal{D}_{2}+ \mathcal{D}_{4}, $$
(2.7)

where

$$\begin{aligned}& \mathcal{D}_{1} = \frac{\mu _{1}}{ \vert R\bar{p} \vert } \biggl[ \frac{(b-a)^{2}}{2} \bigl( \vert R \vert +\alpha _{2}(\beta _{1}+\beta _{2}) \bigr) + \frac{\lambda _{1}\lambda _{2}(\eta -a) [(b-a)^{3}-(\xi -a)^{3} ]}{6} \biggr] \\& \hphantom{\mathcal{D}_{1} =} {}+\frac{1}{ \vert RE \vert } \biggl[ \biggl( \frac{E_{4}\alpha _{2}(\beta _{1}+\beta _{2})(b-a)}{\bar{p}} + \frac{E_{3}\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{2}}{\bar{2q}}+ \frac{E_{3}\lambda _{1}\beta _{2}(\eta -a) (b-a)}{\bar{q}} \\& \hphantom{\mathcal{D}_{1} =} {}+ \frac{E_{4}\lambda _{1}\lambda _{3} (\eta -a) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{4}(b-a)}{\bar{p}} \biggr) \biggl( \frac{\alpha _{4}\mu _{1} (b-a)}{ \vert p(b) \vert } \biggr) \\& \hphantom{\mathcal{D}_{1} =} {}+ \biggl( \frac{E_{2}\alpha _{2}(\beta _{1}+\beta _{2})(b-a)}{\bar{p}}+ \frac{E_{1}\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{2}}{2\bar{q}}+ \frac{E_{1}\lambda _{1}\beta _{2}(\eta -a) (b-a)}{\bar{q}} \\& \hphantom{\mathcal{D}_{1} =} {}+ \frac{E_{2}\lambda _{1}\lambda _{3} (\eta -a) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{2}(b-a)}{\bar{p}} \biggr) \\& \hphantom{\mathcal{D}_{1} =} {}\times \biggl( \frac{\lambda _{4}\mu _{1} [(b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}} \biggr) \biggr], \\& \mathcal{D}_{2} = \frac{\mu _{2}}{ \vert 2R\bar{q} \vert } \biggl[ \frac{\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{3}}{3}+ \lambda _{1} \beta _{2}(\eta -a) (b-a)^{2} \biggr] \\& \hphantom{\mathcal{D}_{2} =} {}+\frac{1}{ \vert RE \vert } \biggl[ \biggl( \frac{E_{4}\alpha _{2}(\beta _{1}+\beta _{2})(b-a)}{\bar{p}}+ \frac{E_{3}\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{2}}{2\bar{q}}+ \frac{E_{3}\lambda _{1}\beta _{2}(\eta -a) (b-a)}{\bar{q}} \\& \hphantom{\mathcal{D}_{2} =} {}+ \frac{E_{4}\lambda _{1}\lambda _{3} (\eta -a) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{4}(b-a)}{\bar{p}} \biggr) \biggl( \frac{\lambda _{2}\mu _{2} (\eta -a)^{2}}{2\bar{q}} \biggr) \\& \hphantom{\mathcal{D}_{2} =} {}+ \biggl( \frac{E_{2}\alpha _{2}(\beta _{1}+\beta _{2})(b-a)}{\bar{p}} + \frac{E_{1}\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{2}}{\bar{2q}}+ \frac{E_{1}\lambda _{1}\beta _{2}(\eta -a) (b-a)}{\bar{q}} \\& \hphantom{\mathcal{D}_{2} =} {}+ \frac{E_{2}\lambda _{1}\lambda _{3} (\eta -a) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{2}(b-a)}{\bar{p}} \biggr) \biggl( \frac{\beta _{4}\mu _{2} (b-a)}{ \vert q(b) \vert } \biggr) \biggr], \\& \mathcal{D}_{3} = \frac{\mu _{1}}{ \vert R\bar{p} \vert } \biggl[ \frac{(b-a)^{2}}{2} \bigl(\alpha _{2}\lambda _{3}(b-\xi ) \bigr)+ \frac{\lambda _{3}(\alpha _{1}+\alpha _{2}) [ (b-a)^{3}-(\xi -a)^{3} ]}{6} \biggr] \\& \hphantom{\mathcal{D}_{3} =} {}+\frac{1}{RE} \biggl[ \biggl( \frac{E_{4}\alpha _{2}\lambda _{3}(b-\xi )(b-a)}{\bar{p}}+ \frac{E_{3}\lambda _{1}\lambda _{3}(b-\xi )(\eta -a)^{2}}{2\bar{q}}+ \frac{E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) (b-a)}{\bar{q}} \\& \hphantom{\mathcal{D}_{3} =} {}+ \frac{E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{3}(b-a)}{\bar{p}} \biggr) \biggl( \frac{\alpha _{4}\mu _{1} (b-a)}{ \vert p(b) \vert } \biggr) \\& \hphantom{\mathcal{D}_{3} =} {}+ \biggl( \frac{E_{2}\alpha _{2}\lambda _{3}(b-\xi )(b-a)}{\bar{p}}+ \frac{E_{1}\lambda _{1}\lambda _{3}(b-\xi )(\eta -a)^{2}}{2\bar{q}}+ \frac{E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) (b-a)}{\bar{q}} \\& \hphantom{\mathcal{D}_{3} =} {}+ \frac{E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{1}(b-a)}{\bar{p}} \biggr) \\& \hphantom{\mathcal{D}_{3} =} {}\times \biggl( \frac{\lambda _{4}\mu _{1} [(b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}} \biggr) \biggr], \\& \mathcal{D}_{4} = \frac{\mu _{2}}{ \vert R\bar{q} \vert } \biggl[ \frac{(b-a)^{2}}{2} \bigl( \vert R \vert +\beta _{2}(\alpha _{1}+\alpha _{2}) \bigr)+ \frac{\lambda _{1}\lambda _{3}(b-\xi )(\eta -a)^{3}}{6} \biggr] \\& \hphantom{\mathcal{D}_{4} =} {}+\frac{1}{RE} \biggl[ \biggl( \frac{E_{4}\alpha _{2}\lambda _{3}(b-\xi )(b-a)}{\bar{p}}+ \frac{E_{3}\lambda _{1}\lambda _{3}(b-\xi )(\eta -a)^{2}}{2\bar{q}}+ \frac{E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) (b-a)}{\bar{q}} \\& \hphantom{\mathcal{D}_{4} =}{}+ \frac{E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{3}(b-a)}{\bar{p}} \biggr) \biggl( \frac{\lambda _{2}\mu _{2} (\eta -a)^{2}}{2\bar{q}} \biggr) \\& \hphantom{\mathcal{D}_{4} =} {}+ \biggl( \frac{E_{2}\alpha _{2}\lambda _{3}(b-\xi )(b-a)}{\bar{p}}+ \frac{E_{1}\lambda _{1}\lambda _{3}(b-\xi )(\eta -a)^{2}}{2\bar{q}}+ \frac{E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) (b-a)}{\bar{q}} \\& \hphantom{\mathcal{D}_{4} =} {}+ \frac{E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{1}(b-a)}{\bar{p}} \biggr) \biggl( \frac{\beta _{4}\mu _{2} (b-a)}{ \vert q(b) \vert } \biggr) \biggr], \end{aligned}$$
(2.8)
$$\begin{aligned}& \bar{p}= \inf_{z \in [a, b]} \bigl\vert p(z) \bigr\vert ,\qquad \bar{q}= \inf_{z \in [a, b]} \bigl\vert q(z) \bigr\vert . \end{aligned}$$
(2.9)

3 The Carathéodory case

To prove our first existence result for multivalued problem (1.1), we need the following known results.

Lemma 3.1

([30])

Let X be a Banach space. Let \(F : [a, b] \times \mathbb{R}^{2} \to {\mathcal {P}}_{cp,c}(\mathbb{R})\) be an \(L^{1}\)- Carathéodory multivalued map, and let φ be a linear continuous mapping from \(L^{1}([a,b],\mathbb{R})\) to \(C([a,b],\mathbb{R})\). Then the operator

$$ \varphi \circ S_{F,u} : C \bigl([a,b],\mathbb{R} \bigr) \to P_{cp,c} \bigl(C \bigl([a,b], \mathbb{R} \bigr) \bigr),\quad u \mapsto ( \varphi \circ S_{F,u}) (u) = \varphi ( S_{F,u})$$

is a closed graph operator in \(C([a,b],\mathbb{R}) \times C([a,b],\mathbb{R})\).

Lemma 3.2

(Nonlinear alternative for Kakutani maps [31])

Let \(\mathcal{S}\) be a Banach space, \(\mathcal{S}_{1}\) be a closed convex subset of \(\mathcal{S}\), U be an open subset of \(\mathcal{S}_{1}\), and \(0\in U\). Suppose that \(F: \overline{U}\to {\mathcal {P}}_{c,cv}(\mathcal{S}_{1})\) is an upper semicontinuous compact map; here \({\mathcal {P}}_{c,cv}(\mathcal{S}_{1})\) denotes the family of nonempty, compact convex subsets of \(\mathcal{S}_{1}\). Then either

  1. (i)

    F has a fixed point in or

  2. (ii)

    there are \(u\in \partial U\) and \(\lambda \in (0,1)\) with \(u\in \lambda F(u)\).

Now we are in a position to present our first main result.

Theorem 3.3

Assume that

\((H_{1})\):

\(F,G:[a,b]\times \mathbb{R}^{2}\longrightarrow \mathcal{P}(\mathbb{R})\) are Carathéodory possessing compact and convex values;

\((H_{2})\):

There exist continuous nondecreasing functions \(\psi _{1},\psi _{2},\phi _{1},\phi _{2}:[0,\infty )\longrightarrow (0, \infty )\) such that

$$ \bigl\Vert F(t,u,v) \bigr\Vert _{\mathcal{P}}:=\sup \bigl\{ \vert \hat{f} \vert :\hat{f}\in F(t,u,v) \bigr\} \leqslant p_{1}(t) \bigl[\psi _{1} \bigl( \Vert u \Vert \bigr) +\phi _{1} \bigl( \Vert v \Vert \bigr) \bigr]$$

and

$$ \bigl\Vert G(t,u,v) \bigr\Vert _{\mathcal{P}}:=\sup \bigl\{ \vert \hat{g} \vert :\hat{g}\in G(t,u,v) \bigr\} \leqslant p_{2}(t) \bigl[\psi _{2} \bigl( \Vert u \Vert \bigr) +\phi _{2} \bigl( \Vert v \Vert \bigr) \bigr]$$

for each \((t,u,v)\in [a,b]\times \mathbb{R}^{2}\), where \(p_{1},p_{2}\in C([a,b],\mathbb{R}^{+})\);

\((H_{3})\):

There exists a constant \(N>0\) such that

$$ \frac{N}{\mathcal{E}_{1} \Vert p_{1} \Vert [\psi _{1}(N)+\phi _{1}(N)]+\mathcal{E}_{2} \Vert p_{2} \Vert [\psi _{2}(N)+\phi _{2}(N)]}>1,$$

where \(\mathcal{E}_{i}\) (\(i=1,2\)) are given in (2.7).

Then problem (1.1) has at least one solution on \([a,b]\).

Proof

Consider the operators \(\Theta _{1},\Theta _{2}:\mathcal{F} \times \mathcal{F} \to { \mathcal {P}}(\mathcal{F} \times \mathcal{F})\) defined by (2.5) and (2.6) respectively. It follows from assumption \((H_{1})\) that the sets \(S_{F,(u,v)}\) and \(S_{G,(u,v)} \) are nonempty for each \((u,v) \in \mathcal{F} \times \mathcal{F}\). Then, for \(\hat{f} \in S_{F,(u,v)}\), \(\hat{g} \in S_{G,(u,v)}\) and \(\forall (u,v) \in \mathcal{F} \times \mathcal{F}\), we have

$$\begin{aligned} h_{1}(u,v) (t) =& \int _{a}^{t} \biggl( \frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}(z)\,dz \biggr)\,du \,ds \\ &{}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}(z)\,dz \biggr)\,du \,ds \biggr] \\ &{}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}(z)\,dz \,ds \biggr) \\ &{}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz -E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned} h_{2}(u,v) (t) =& \int _{a}^{t} \biggl( \frac{\mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du \\ &{}+ \frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \biggl( \frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{ f}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du \,ds \\ &{}-\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}(z)\,dz \biggr)\,du \\ &{}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}(z)\,dz \biggr)\,du \,ds \biggr] \\ &{}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}(z)\,dz \,ds \biggr) \\ &{}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}(z)\,dz \,ds \biggr) \biggr], \end{aligned}$$

where \(h_{1}\in \Theta _{1}(u,v)\), \(h_{2}\in \Theta _{2}(u,v)\), and hence \((h_{1},h_{2}) \in \Theta (u,v)\).

Now, we will verify that the operator Θ satisfies the assumptions of the nonlinear alternative of Leray–Schauder type. In the first step, we show that \(\Theta (u,v)\) is convex valued for each \((u,v) \in \mathcal{F} \times \mathcal{F}\). Let \((h_{i}, \tilde{h_{i}})\in (\Theta _{1},\Theta _{2})\), \(i=1,2\). Then there exist \(\hat{f}_{i}\in S_{F,(u,v)}\), \(\hat{g}_{i}\in S_{G,(u,v)}\), \(i=1,2\), such that, for each \(t \in [a,b]\), we have

$$\begin{aligned} h_{i}(t) =& \int _{a}^{t} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{i}(z)\,dz \biggr)\,du+\frac {1}{R} \biggl[ -\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{i}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{i}(z)\,dz \biggr)\,du \,ds \\ &{}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{i}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{i}(z)\,dz \biggr)\,du \,ds \biggr] \\ &{}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{i}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{i}(z)\,dz \,ds \biggr) \\ &{}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz -E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{i}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{i}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned} \tilde{h_{i}}(t) =& \int _{a}^{t} \biggl( \frac{\mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{i}(z)\,dz \biggr)\,du \\ &{}+ \frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{ f}_{i}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{i}(z)\,dz \biggr)\,du \,ds \\ &{}-\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}_{i}(z)\,dz \biggr)\,du \\ &{}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{i}(z)\,dz \biggr)\,du \,ds \biggr] \\ &{}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{i}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{i}(z)\,dz \,ds \biggr) \\ &{}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{i}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{i}(z)\,dz \,ds \biggr) \biggr]. \end{aligned}$$

Let \(0 \le \omega \le 1\). Then, for each \(t \in [0,1]\), we have

$$\begin{aligned}& \bigl[\omega h_{1}+(1-\omega )h_{2} \bigr](t) \\ & \quad = \int _{a}^{t} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} \bigl[\omega \hat{f}_{1}(z)+(1- \omega )\hat{f}_{2} (z) \bigr]\,dz \biggr)\,du \\ & \qquad {}+\frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \bigl[\omega \hat{f}_{1}(z)+(1- \omega )\hat{f}_{2} (z) \bigr]\,dz \biggr)\,du \\ & \qquad {}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \bigl[\omega \hat{g}_{1}(z)+(1- \omega )\hat{g}_{2} (z) \bigr]\,dz \biggr)\,du \,ds \\ & \qquad {} -\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \bigl[\omega \hat{g}_{1}(z)+(1- \omega )\hat{g}_{2} (z) \bigr]\,dz \biggr)\,du \\ & \qquad {}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \bigl[\omega \hat{f}_{1}(z)+(1- \omega )\hat{f}_{2} (z) \bigr]\,dz \biggr)\,du \,ds \biggr] \\ & \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ & \qquad {}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \bigl[\omega \hat{f}_{1}(z)+(1- \omega )\hat{f}_{2} (z) \bigr]\,dz \biggr) \\& \qquad {}+ \biggl(- E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz+E_{3} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}-E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \frac{1}{q(z)}\,dz+E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{ \eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \bigl[\omega \hat{g}_{1}(z)+(1- \omega )\hat{g}_{2} (z) \bigr]\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz -E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \bigl[\omega \hat{g}_{1}(z)+(1- \omega )\hat{g}_{2} (z) \bigr]\,dz \biggr) \\& \qquad {}+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz+E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}-E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \frac{1}{q(z)}\,dz+E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \bigl[\omega \hat{f}_{1}(z)+(1- \omega )\hat{f}_{2} (z) \bigr]\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned}& \bigl[\omega \tilde{h_{1}}+(1-\omega )\tilde{h_{2}} \bigr](t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{2}}{q(u)} \int _{a}^{u} \bigl[\omega \hat{g}_{1}(z)+(1- \omega )\hat{g}_{2} (z) \bigr]\,dz \biggr)\,du \\& \qquad {}+\frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b- \xi ) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \bigl[\omega \hat{f}_{1}(z)+(1- \omega )\hat{f}_{2} (z) \bigr]\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \bigl[\omega \hat{g}_{1}(z)+(1- \omega )\hat{g}_{2} (z) \bigr]\,dz \biggr)\,du \,ds \\& \qquad {} -\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \bigl[\omega \hat{g}_{1}(z)+(1- \omega )\hat{g}_{2} (z) \bigr]\,dz \biggr)\,du \\& \qquad {}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \bigl[\omega \hat{f}_{1}(z)+(1- \omega )\hat{f}_{2} (z) \bigr]\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \bigl[\omega \hat{f}_{1}(z)+(1- \omega )\hat{f}_{2} (z) \bigr]\,dz \biggr) \\& \qquad {}+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b- \xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz+E_{3} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}-E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz+E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\& \qquad {} \times \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \bigl[\omega \hat{g}_{1}(z)+(1- \omega )\hat{g}_{2} (z) \bigr]\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \bigl[\omega \hat{g}_{1}(z)+(1- \omega )\hat{g}_{2} (z) \bigr]\,dz \biggr) \\& \qquad {}+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz+E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}-E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz+E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}+RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \bigl[\omega \hat{f}_{1}(z)+(1- \omega )\hat{f}_{2} (z) \bigr]\,dz \,ds \biggr) \biggr]. \end{aligned}$$

Since \(S_{F,(u,v)}\), \(S_{G,(u,v)}\) are convex valued as F and G are convex valued maps, therefore \(\omega h_{1}+(1-\omega )h_{2} \in \Theta _{1}\), \(\omega \tilde{h_{1}}+(1- \omega )\tilde{h_{2}} \in \Theta _{2} \), and hence \(\omega ( h_{1},\tilde{h_{1}})+(1-\omega )(h_{2},\tilde{h_{2}}) \in \Theta \).

Now, we show that Θ maps bounded sets into bounded sets in \(\mathcal{F} \times \mathcal{F}\). For a positive number \(\nu ^{*}\), let \(B_{\nu ^{*}} = \{(u,v) \in \mathcal{F} \times \mathcal{F}: \|(u,v)\| \le \nu ^{*} \}\) be a bounded set in \(\mathcal{F} \times \mathcal{F}\). Then, for each \(h_{i} \in \Theta _{i}\) (\(i=1,2\)), \((u,v)\in B_{ \nu ^{*}}\), there exist \(\hat{f} \in S_{F,(u,v)}\), \(\hat{g} \in S_{G,(u,v)}\) such that

$$\begin{aligned} h_{1}(u,v) (t) =& \int _{a}^{t} \biggl( \frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}(z)\,dz \biggr)\,du \,ds \\ &{}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}(z)\,dz \biggr)\,du \,ds \biggr] \\ &{}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}(z)\,dz \,ds \biggr) \\ &{}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz -E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned} h_{2}(u,v) (t) =& \int _{a}^{t} \biggl( \frac{\mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \biggl( \frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{ f}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du \,ds \\ &{}-\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}(z)\,dz \biggr)\,du \\ &{}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}(z)\,dz \biggr)\,du \,ds \biggr] \\ &{}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}(z)\,dz \,ds \biggr) \\ &{}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}(z)\,dz \,ds \biggr) \biggr]. \end{aligned}$$

Then, for \(t\in [a,b]\), we have

$$\begin{aligned}& \bigl\vert h_{1}(u,v) (t) \bigr\vert \\& \quad \leq \int _{a}^{t} \biggl(\frac{ \vert \mu _{1} \vert }{ \vert p(u) \vert } \int _{a}^{u} \bigl\vert \hat{f}(z) \bigr\vert \,dz \biggr)\,du+\frac {1}{ \vert R \vert } \biggl[ \bigl\vert \alpha _{2}( \beta _{1}+\beta _{2}) \bigr\vert \int _{a}^{b} \biggl(\frac{ \vert \mu _{1} \vert }{ \vert p(u) \vert } \int _{a}^{u} \bigl\vert \hat{f}(z) \bigr\vert \,dz \biggr)\,du \\& \qquad {}+ \bigl\vert \lambda _{1}(\beta _{1}+\beta _{2}) \bigr\vert \int _{a}^{ \eta } \int _{a}^{s} \biggl(\frac{ \vert \mu _{2} \vert }{ \vert q(u) \vert } \int _{a}^{u} \bigl\vert \hat{g}(z) \bigr\vert \,dz \biggr)\,du \,ds \\& \qquad {}+ \bigl\vert \lambda _{1}\beta _{2}(\eta -a) \bigr\vert \int _{a}^{b} \biggl(\frac{ \vert \mu _{2} \vert }{ \vert q(u) \vert } \int _{a}^{u} \bigl\vert \hat{g}(z) \bigr\vert \,dz \biggr)\,du \\& \qquad {}+ \bigl\vert \lambda _{1}\lambda _{3} (\eta -a) \bigr\vert \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \vert \mu _{1} \vert }{ \vert p(u) \vert } \int _{a}^{u} \bigl\vert \hat{f}(z) \bigr\vert \,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ \vert ER \vert } \biggl[ \biggl( \bigl\vert E_{4}\alpha _{2}(\beta _{1}+ \beta _{2}) \bigr\vert \int _{a}^{b}\frac{1}{ \vert p(z) \vert }\,dz+ \bigl\vert E_{3}\lambda _{1}(\beta _{1}+ \beta _{2}) \bigr\vert \int _{a}^{\eta } \int _{a}^{s}\frac{1}{ \vert q(z) \vert }\,dz \,ds \\& \qquad {}+ \bigl\vert E_{3}\lambda _{1}\beta _{2}( \eta -a) \bigr\vert \int _{a}^{b} \frac{1}{ \vert q(z) \vert }\,dz+ \bigl\vert E_{4}\lambda _{1}\lambda _{3} (\eta -a) \bigr\vert \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{ \vert p(z) \vert }\,dz \,ds \\& \qquad {}+ \vert RE_{4} \vert \int _{a}^{t}\frac{1}{ \vert p(z) \vert }\,dz \biggr) \biggl( \frac{ \vert \alpha _{4}\mu _{1} \vert }{ \vert p(b) \vert } \int _{a}^{b} \bigl\vert \hat{f}(z) \bigr\vert \,dz \biggr)+ \biggl( \bigl\vert E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \bigr\vert \int _{a}^{b} \frac{1}{ \vert p(z) \vert }\,dz \\& \qquad {}+ \bigl\vert E_{3}\lambda _{1}(\beta _{1}+ \beta _{2}) \bigr\vert \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{ \vert q(z) \vert }\,dz \,ds+ \bigl\vert E_{3}\lambda _{1}\beta _{2}( \eta -a) \bigr\vert \int _{a}^{b}\frac{1}{ \vert q(z) \vert }\,dz \\& \qquad {}+ \bigl\vert E_{4}\lambda _{1}\lambda _{3} (\eta -a) \bigr\vert \int _{\xi}^{b} \int _{a}^{s}\frac{1}{ \vert p(z) \vert }\,dz \,ds+ \vert RE_{4} \vert \int _{a}^{t} \frac{1}{ \vert p(z) \vert }\,dz \biggr) \\& \qquad {}\times \biggl( \int _{a}^{\eta} \frac{ \vert \lambda _{2}\mu _{2} \vert }{ \vert q(s) \vert } \int _{a}^{s} \bigl\vert \hat{g}(z) \bigr\vert \,dz \,ds \biggr) \\& \qquad {}+ \biggl( \bigl\vert E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \bigr\vert \int _{a}^{b} \frac{1}{ \vert p(z) \vert }\,dz+ \bigl\vert E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \bigr\vert \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{ \vert q(z) \vert }\,dz \,ds \\& \qquad {}+ \bigl\vert E_{1}\lambda _{1}\beta _{2}( \eta -a) \bigr\vert \int _{a}^{b} \frac{1}{ \vert q(z) \vert }\,dz + \bigl\vert E_{2}\lambda _{1}\lambda _{3} (\eta -a) \bigr\vert \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{ \vert p(z) \vert }\,dz \,ds \\& \qquad {}+ \vert RE_{2} \vert \int _{a}^{t}\frac{1}{ \vert p(z) \vert }\,dz \biggr) \biggl( \frac{ \vert \beta _{4}\mu _{2} \vert }{ \vert q(b) \vert } \int _{a}^{b} \bigl\vert \hat{g}(z) \bigr\vert \,dz \biggr)+ \biggl( \bigl\vert E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \bigr\vert \int _{a}^{b} \frac{1}{ \vert p(z) \vert }\,dz \\& \qquad {}+ \bigl\vert E_{1}\lambda _{1}(\beta _{1}+ \beta _{2}) \bigr\vert \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{ \vert q(z) \vert }\,dz \,ds+ \bigl\vert E_{1}\lambda _{1}\beta _{2}( \eta -a) \bigr\vert \int _{a}^{b}\frac{1}{ \vert q(z) \vert }\,dz \\& \qquad {}+ \bigl\vert E_{2}\lambda _{1}\lambda _{3} (\eta -a) \bigr\vert \int _{\xi}^{b} \int _{a}^{s}\frac{1}{ \vert p(z) \vert }\,dz \,ds+ \vert RE_{2} \vert \int _{a}^{t} \frac{1}{ \vert p(z) \vert }\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b} \frac{ \vert \lambda _{4}\mu _{1} \vert }{ \vert p(s) \vert } \int _{a}^{s} \bigl\vert \hat{f}(z) \bigr\vert \,dz \,ds \biggr) \biggr] \\& \quad \le \biggl\{ \frac{\mu _{1}}{ \vert R\bar{p} \vert } \biggl[\frac{(b-a)^{2}}{2} \bigl( \vert R \vert +\alpha _{2}(\beta _{1}+\beta _{2}) \bigr) + \frac{\lambda _{1}\lambda _{2}(\eta -a) [(b-a)^{3}-(\xi -a)^{3} ]}{6} \biggr] \\& \qquad {}+\frac{1}{ \vert RE \vert } \biggl[ \biggl( \frac{E_{4}\alpha _{2}(\beta _{1}+\beta _{2})(b-a)}{\bar{p}} + \frac{E_{3}\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{2}}{\bar{2q}}+ \frac{E_{3}\lambda _{1}\beta _{2}(\eta -a) (b-a)}{\bar{q}} \\& \qquad {}+ \frac{E_{4}\lambda _{1}\lambda _{3} (\eta -a) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{4}(b-a)}{\bar{p}} \biggr) \biggl( \frac{\alpha _{4}\mu _{1} (b-a)}{ \vert p(b) \vert } \biggr) \\& \qquad {}+ \biggl( \frac{E_{2}\alpha _{2}(\beta _{1}+\beta _{2})(b-a)}{\bar{p}}+ \frac{E_{1}\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{2}}{2\bar{q}}+ \frac{E_{1}\lambda _{1}\beta _{2}(\eta -a) (b-a)}{\bar{q}} \\& \qquad {}+ \frac{E_{2}\lambda _{1}\lambda _{3} (\eta -a) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{2}(b-a)}{\bar{p}} \biggr) \\& \qquad {}\times \biggl( \frac{\lambda _{4}\mu _{1} [(b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}} \biggr) \biggr] \biggr\} \\& \qquad {} \times \Vert p_{1} \Vert \bigl[\psi _{1} \bigl(\nu ^{*} \bigr) +\phi _{1} \bigl(\nu ^{*} \bigr) \bigr] \\& \qquad {}+ \biggl\{ \frac{\mu _{2}}{ \vert 2R\bar{q} \vert } \biggl[ \frac{\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{3}}{3}+\lambda _{1} \beta _{2}(\eta -a) (b-a)^{2} \biggr] \\& \qquad {}+\frac{1}{ \vert RE \vert } \biggl[ \biggl( \frac{E_{4}\alpha _{2} (\beta _{1}+\beta _{2})(b-a)}{\bar{p}} + \frac{E_{3}\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{2}}{2\bar{q}} \\& \qquad {}+ \frac{E_{3}\lambda _{1}\beta _{2}(\eta -a) (b-a)}{\bar{q}} \\& \qquad {}+ \frac{E_{4}\lambda _{1}\lambda _{3} (\eta -a) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{4}(b-a)}{\bar{p}} \biggr) \biggl( \frac{\lambda _{2}\mu _{2} (\eta -a)^{2}}{2\bar{q}} \biggr) \\& \qquad {}+ \biggl( \frac{E_{2}\alpha _{2}(\beta _{1}+\beta _{2})(b-a)}{\bar{p}} + \frac{E_{1}\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{2}}{\bar{2q}}+ \frac{E_{1}\lambda _{1}\beta _{2}(\eta -a) (b-a)}{\bar{q}} \\& \qquad {}+ \frac{E_{2}\lambda _{1}\lambda _{3} (\eta -a) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{2}(b-a)}{\bar{p}} \biggr) \biggl( \frac{\beta _{4}\mu _{2} (b-a)}{ \vert q(b) \vert } \biggr) \biggr] \biggr\} \\& \qquad {}\times \Vert p_{2} \Vert \bigl[\psi _{2} \bigl(\nu ^{*} \bigr) +\phi _{2} \bigl(\nu ^{*} \bigr) \bigr] \\& \quad = \mathcal{D}_{1} \Vert p_{1} \Vert \bigl[\psi _{1} \bigl(\nu ^{*} \bigr) +\phi _{1} \bigl( \nu ^{*} \bigr) \bigr]+ \mathcal{D}_{2} \Vert p_{2} \Vert \bigl[\psi _{2} \bigl(\nu ^{*} \bigr) +\phi _{2} \bigl( \nu ^{*} \bigr) \bigr]. \end{aligned}$$

Similarly, we can obtain that

$$ \bigl\vert h_{2}(u,v) (t) \bigr\vert \leq \mathcal{D}_{3} \Vert p_{1} \Vert \bigl[\psi _{1} \bigl( \nu ^{*} \bigr) +\phi _{1} \bigl(\nu ^{*} \bigr) \bigr]+ \mathcal{D}_{4} \Vert p_{2} \Vert \bigl[\psi _{2} \bigl( \nu ^{*} \bigr) +\phi _{2} \bigl(\nu ^{*} \bigr) \bigr].$$

Thus, we get

$$\begin{aligned}& \bigl\Vert h_{1}(u,v) \bigr\Vert \leq \mathcal{D}_{1} \Vert p_{1} \Vert \bigl[\psi _{1} \bigl(\nu ^{*} \bigr) + \phi _{1} \bigl(\nu ^{*} \bigr) \bigr]+ \mathcal{D}_{2} \Vert p_{2} \Vert \bigl[\psi _{2} \bigl(\nu ^{*} \bigr) + \phi _{2} \bigl(\nu ^{*} \bigr) \bigr],\\& \bigl\Vert h_{2}(u,v) \bigr\Vert \leq \mathcal{D}_{3} \Vert p_{1} \Vert \bigl[\psi _{1} \bigl(\nu ^{*} \bigr) + \phi _{1} \bigl(\nu ^{*} \bigr) \bigr]+ \mathcal{D}_{4} \Vert p_{2} \Vert \bigl[\psi _{2} \bigl(\nu ^{*} \bigr) + \phi _{2} \bigl(\nu ^{*} \bigr) \bigr], \end{aligned}$$

where \(\mathcal{D}_{i}\) (\(i=1,\ldots ,4\)) are defined by (2.8). In consequence, we have

$$\begin{aligned} \bigl\Vert (h_{1},h_{2}) \bigr\Vert =& \bigl\Vert h_{1}(u,v) \bigr\Vert + \bigl\Vert h_{2}(u,v) \bigr\Vert \\ \leq& (\mathcal{D}_{1}+ \mathcal{D}_{3}) \Vert p_{1} \Vert \bigl[ \psi _{1} \bigl(\nu ^{*} \bigr) +\phi _{1} \bigl(\nu ^{*} \bigr) \bigr]+( \mathcal{D}_{2}+ \mathcal{D}_{4}) \Vert p_{2} \Vert \bigl[\psi _{2} \bigl(\nu ^{*} \bigr) +\phi _{2} \bigl(\nu ^{*} \bigr) \bigr] \\ =& \mathcal{E}_{1} \Vert p_{1} \Vert \bigl[\psi _{1} \bigl(\nu ^{*} \bigr) +\phi _{1} \bigl( \nu ^{*} \bigr) \bigr]+ \mathcal{E}_{2} \Vert p_{2} \Vert \bigl[\psi _{2} \bigl(\nu ^{*} \bigr) +\phi _{2} \bigl( \nu ^{*} \bigr) \bigr] \\ =& \ell\quad \text{(constant),} \end{aligned}$$

where \(\mathcal{E}_{i}\), \(i=1,2\), are defined in (2.7).

Next, we verify that \(\Theta (u,v)\) is equicontinuous. Let \(t_{1}, t_{2} \in [a,b]\) with \(t_{1}< t_{2}\). Then, for \(\hat{f} \in S_{F,(u,v)}\), \(\hat{g} \in S_{G,(u,v)}\), we get

$$\begin{aligned}& \bigl\vert h_{1}(u,v) (t_{2})-h_{1}(u,v) (t_{1}) \bigr\vert \\& \quad = \biggl\vert \int _{a}^{t_{2}} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}(\tau )\,dz \biggr)\,du- \int _{a}^{t_{1}} \biggl( \frac{\mu _{1}}{p(u)} \int _{a}^{u}\hat{f}(\tau )\,dz \biggr)\,du \\& \qquad {}+ \biggl(\frac{E_{4}}{E} \biggl( \int _{a}^{t_{2}} \frac{1}{p(z)}\,dz- \int _{a}^{t_{1}}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}(\tau )\,dz \biggr) \biggr) \\& \qquad {}+ \biggl(\frac{E_{4}}{E} \biggl( \int _{a}^{t_{2}} \frac{1}{p(z)}\,dz- \int _{a}^{t_{1}}\frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{ \eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}(\tau )\,dz \,ds \biggr) \biggr) \\& \qquad {}+ \biggl(\frac{E_{2}}{E} \int _{a}^{t_{2}}\frac{1}{p(z)}\,dz- \int _{a}^{t_{1}}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b}\hat{g}(\tau )\,dz \biggr) ) \\& \qquad {}+ \biggl(\frac{E_{2}}{E} \biggl( \int _{a}^{t_{2}} \frac{1}{p(z)}\,dz - \int _{a}^{t_{1}}\frac{1}{p(z)}\,dz \biggr) \biggl( \int _{ \xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s}\hat{f}(\tau )\,dz \,ds \biggr) \biggr) \biggr\vert \\& \quad \le \biggl[ \biggl(\frac{\mu _{1}}{ \vert \bar{p} \vert } \biggr) \frac{(t_{2}-a)^{2}-(t_{1}-a)^{2}}{2}+ \frac{E_{4}}{E \vert \bar{p} \vert } \biggl( \frac{\alpha _{4}\mu _{1}}{ \vert p(b) \vert } \biggr) (t_{2}-t_{1}) (b-a) \\& \qquad {}+\frac{E_{2}}{E \vert \bar{p} \vert } \frac{ (\lambda _{4}\mu _{1} )(t_{2}-t_{1}) [ (b-a)^{2}-(\xi -a)^{2} ]}{2} \biggr] \times \Vert p_{1} \Vert \bigl[\psi _{1} \bigl(\nu ^{*} \bigr) +\phi _{1} \bigl(\nu ^{*} \bigr) \bigr] \\& \qquad {} + \biggl[\frac{E_{4}}{E \vert \bar{p} \vert } \frac{ (\lambda _{2}\mu _{2} )(t_{2}-t_{1})(\eta -a)^{2}}{2\bar{q}}+ \frac{E_{2}}{E \vert \bar{p} \vert } \biggl( \frac{\beta _{4}\mu _{2}}{ \vert q(b) \vert } \biggr) (t_{2}-t_{1}) (b-a) \biggr] \\& \qquad {} \times \Vert p_{2} \Vert \bigl[\psi _{2} \bigl(\nu ^{*} \bigr) +\phi _{2} \bigl(\nu ^{*} \bigr) \bigr] \rightarrow 0 \quad \text{as } t_{2} \rightarrow t_{1} \text{ independent of } (u,v). \end{aligned}$$

Analogously, it can be shown that

$$ \bigl\vert h_{2}(u,v) (t_{2})-h_{2}(u,v) (t_{1}) \bigr\vert \to 0\quad \text{as } t_{2} \rightarrow t_{1} \text{ independent of } (u,v).$$

Obviously, the right-hand sides of the above inequalities tend to zero independently of \((u,v)\in B_{\nu ^{*}}\) as \(t_{2}-t_{1}\longrightarrow 0\). Therefore, the operator \(\Theta (u,v)\) is equicontinuous, and hence we deduce that \(\Theta (u,v):\mathcal{F} \times \mathcal{F} \to {\mathcal {P}}( \mathcal{F} \times \mathcal{F})\) is completely continuous by the Arzelá–Ascoli theorem.

In the next step, we show that \(\Theta (u,v)\) is upper semicontinuous. Instead it will be established that \(\Theta (u,v)\) has a closed graph in view of the fact that a completely continuous operator is upper semicontinuous if it has a closed graph. Let \(( u_{k},v_{k})\longrightarrow ( u_{\ast},v_{\ast})\) and \((h_{k} ,\tilde{h_{k}})\in \Theta (u_{k},v_{k})\) and \((h_{k} ,\tilde{h_{k}})\longrightarrow ( h_{\ast},\tilde{h_{\ast}}) \). Then we have to show that \(( h_{\ast},\tilde{h_{\ast}}) \in \Theta (u_{\ast},v_{\ast})\). Associated with \((h_{k} ,\tilde{h_{k}}) \in \Theta (u_{k},v_{k})\) and \(\hat{f}_{k} \in S_{F,(u,v)}\), \(\hat{g}_{k} \in S_{G,(u,v)}\), for each \(t \in [a,b]\), we have

$$\begin{aligned}& h_{k}(u_{k},v_{k}) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{k}(z)\,dz \biggr)\,du+\frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+ \beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{k}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}_{k}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{k}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{k}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{k}(z)\,dz \biggr)+ \biggl(-E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{k}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{k}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{k}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned}& \tilde{h_{k}}(u_{k},v_{k}) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{k}(z)\,dz \biggr)\,du+\frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b- \xi ) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{ f}_{k}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{k}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}_{k}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{k}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{k}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{k}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{k}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{k}(z)\,dz \,ds \biggr) \biggr]. \end{aligned}$$

Consider the continuous linear operators \(\Psi _{1},\Psi _{2}:L^{1}([a,b],\mathcal{F}\times \mathcal{F}) \longrightarrow C([a,b],\mathcal{F}\times \mathcal{F}) \) given by

$$\begin{aligned} \Psi _{1}(u,v) (t) =& \int _{a}^{t} \biggl( \frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}(z)\,dz \biggr)\,du \\ &{}+ \frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}(z)\,dz \biggr)\,du \,ds \\ &{}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}(z)\,dz \biggr)\,du \,ds \biggr] \\ &{}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}(z)\,dz \biggr)+ \biggl(-E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}(z)\,dz \,ds \biggr) \\ &{}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned} \Psi _{2}(u,v) (t) =& \int _{a}^{t} \biggl( \frac{\mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \biggl( \frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{ f}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du \,ds \\ &{}-\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}(z)\,dz \biggr)\,du \\ &{}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}(z)\,dz \biggr)\,du \,ds \biggr] \\ &{}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}(z)\,dz \,ds \biggr) \\ &{}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}(z)\,dz \,ds \biggr) \biggr]. \end{aligned}$$

From Lemma 3.1, we know that \((\Psi _{1},\Psi _{2}) \circ (S_{F},S_{G})\) is a closed graph operator. Moreover, we have \((h_{k},\tilde{h_{k}}) \in (\Psi _{1},\Psi _{2}) \circ (S_{F,(u_{k},v_{k})},S_{G,(u_{k},v_{k})})\) for all k. Since \((u_{k},v_{k}) \longrightarrow (u_{\ast},v_{\ast})\), \((h_{k}, \tilde{h_{k}}) \longrightarrow (h_{\ast},\tilde{h_{\ast}})\), it follows that \(\hat{f}_{\ast }\in S_{F,(u,v)}\), \(\hat{g}_{\ast }\in S_{G,(u,v)}\) such that

$$\begin{aligned}& h_{\ast}(u_{\ast},v_{\ast}) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{\ast}(z)\,dz \biggr)\,du+\frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+ \beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{\ast}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}_{\ast}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{\ast}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{\ast}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{\ast}(z)\,dz \biggr)+ \biggl(-E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{\ast}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{\ast}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{\ast}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned}& \tilde{h_{\ast}}(u_{\ast},v_{\ast}) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{\ast}(z)\,dz \biggr)\,du+\frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b- \xi ) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{ f}_{ \ast}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{\ast}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}_{\ast}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{\ast}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{\ast}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{\ast}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{\ast}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{\ast}(z)\,dz \,ds \biggr) \biggr], \end{aligned}$$

which leads to the conclusion that \((h_{k},\tilde{h_{k}})\in \Theta (u_{\ast},v_{\ast})\).

Finally, we show that there exists an open set \(U\subseteq \mathcal{F} \times \mathcal{F} \to {\mathcal {P}}( \mathcal{F} \times \mathcal{F})\) with \((u,v) \notin \epsilon \Theta (u,v)\) for any \(\epsilon \in (0,1)\) and all \((u,v) \in \partial U \). Let \(\epsilon \in (0,1)\) and \((u,v) \in \epsilon \Theta (u,v)\). Then there exist \(\hat{f}\in S_{F},_{(u,v)}\) and \(\hat{g}\in S_{G},_{(u,v)}\) such that, for \(t \in [a,b]\), we have

$$\begin{aligned} u(t) = &\epsilon \int _{a}^{t} \biggl( \frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}(z)\,dz \biggr)\,du+ \frac {\epsilon}{R} \biggl[ -\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}(z)\,dz \biggr)\,du \,ds \\ &{}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}(z)\,dz \biggr)\,du \,ds \biggr] \\ &{}+\frac{\epsilon}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+\beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}( \beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}(z)\,dz \biggr)+ \biggl(-E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}(z)\,dz \,ds \biggr) \\ &{}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned} v(t) = &\epsilon \int _{a}^{t} \biggl( \frac{\mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du+ \frac {\epsilon}{R} \biggl[ -\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{ f}(z)\,dz \biggr)\,du \\ &{}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du \,ds \\ &{}-\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}(z)\,dz \biggr)\,du \\ &{}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}(z)\,dz \biggr)\,du \,ds \biggr] \\ &{}+\frac{\epsilon}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b-\xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1} \lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}(z)\,dz \,ds \biggr) \\ &{}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\ &{}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\ & {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\ &{}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\ &{}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\ &{}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}(z)\,dz \,ds \biggr) \biggr]. \end{aligned}$$

Using the arguments employed in the second step, we find that

$$ \Vert u \Vert \leq \mathcal{D}_{1} \Vert p_{1} \Vert \bigl[\psi _{1} \bigl( \Vert u \Vert \bigr)+ \phi _{1} \bigl( \Vert v \Vert \bigr) \bigr]+\mathcal{D}_{2} \Vert p_{2} \Vert \bigl[\psi _{2} \bigl( \Vert u \Vert \bigr)+ \phi _{2} \bigl( \Vert v \Vert \bigr) \bigr] $$

and

$$ \Vert v \Vert \leq \mathcal{D}_{3} \Vert p_{1} \Vert \bigl[\psi _{1} \bigl( \Vert u \Vert \bigr)+ \phi _{1} \bigl( \Vert v \Vert \bigr) \bigr]+\mathcal{D}_{4} \Vert p_{2} \Vert \bigl[\psi _{2} \bigl( \Vert u \Vert \bigr)+\phi _{2} \bigl( \Vert v \Vert \bigr) \bigr]. $$

Then we have

$$\begin{aligned} \bigl\Vert (u,v) \bigr\Vert =& \Vert u \Vert + \Vert v \Vert \\ \leq& (\mathcal{D}_{1}+\mathcal{D}_{3}) \Vert p_{1} \Vert \bigl[\psi _{1} \bigl( \Vert u \Vert \bigr)+ \phi _{1} \bigl( \Vert v \Vert \bigr) \bigr] \\ &{}+( \mathcal{D}_{2}+ \mathcal{D}_{4}) \Vert p_{2} \Vert \bigl[\psi _{2} \bigl( \Vert u \Vert \bigr)+\phi _{2} \bigl( \Vert v \Vert \bigr) \bigr] \\ \leq& \mathcal{E}_{1} \Vert p_{1} \Vert \bigl[\psi _{1} \bigl( \Vert u \Vert \bigr)+\phi _{1} \bigl( \Vert v \Vert \bigr) \bigr]+\mathcal{E}_{2} \Vert p_{2} \Vert \bigl[\psi _{2} \bigl( \Vert u \Vert \bigr)+ \phi _{2} \bigl( \Vert v \Vert \bigr) \bigr], \end{aligned}$$

where \(\mathcal{E}_{i}\), \(i=1,2 \), are given by (2.7). Consequently, we have

$$ \frac{ \Vert (u,v) \Vert }{\mathcal{E}_{1} \Vert p_{1} \Vert [\psi _{1}( \Vert u \Vert )+\phi _{1}( \Vert v \Vert )]+\mathcal{E}_{2} \Vert p_{2} \Vert [\psi _{2}( \Vert u \Vert )+\phi _{2}( \Vert v \Vert )]} \leq 1. $$

According to \((H_{3})\), there exists N such that \(\|(u,v)\|\neq N \). Let us set

$$ U= \bigl\{ (u,v)\in (\mathcal{F} \times \mathcal{F}): \bigl\Vert (u,v) \bigr\Vert < N \bigr\} . $$

Observe that the operator \(\Theta :\bar{U}\longrightarrow \mathcal{P}_{cp,cv}(\mathcal{F}) \times \mathcal{P}_{cp,cv}(\mathcal{F}) \) is completely continuous and upper semicontinuous. From the choice of U, there is no \((u,v)\in \partial U \) such that \((u,v) \in \epsilon \Theta (u,v)\) for some \(\epsilon \in (0,1)\). Therefore, by the nonlinear alternative of Leray–Schauder type (Lemma 3.2), we deduce that Θ has a fixed point \((u,v)\in \bar{U}\) which is a solution of problem (1.1). □

4 The Lipschitz case

The forthcoming result is based on the fixed point theorem for contraction multivalued operators due to Covitz and Nadler [32], which is stated below.

Lemma 4.1

(Covitz and Nadler)

Let \((X,d)\) be a complete metric space. If \(G : X \to P_{cl}(X)\) is a contraction, then \(\mathit{Fix} G \ne \emptyset \).

Remark 4.2

Let \((X,d)\) be a metric space induced from the normed space \((X; \|\cdot \|)\). Consider \(H_{d} :{\mathcal{P}}(X) \times {\mathcal{P}}(X) \to \mathbb{R} \cup \{\infty \}\) given by

$$ H_{d}(A, B) = \max \Bigl\{ \sup_{a \in A}d(a,B), \sup _{b \in B}d(A,b) \Bigr\} ,$$

where \(d(A,b) = \inf_{a\in A}d(a,b)\) and \(d(a,B) = \inf_{b\in B}d(a,b)\). Then \((P_{b,cl}(X), H_{d})\) is a metric space and \((P_{cl}(X), H_{d})\) is a generalized metric space (see [33]).

Theorem 4.3

Assume that the following conditions hold:

\((H_{5})\):

\(F,G : [a,b] \times \mathbb{R}^{2} \to {\mathcal{P}}_{cp}(\mathbb{R})\) are such that \(F(\cdot ,u,v), G(\cdot ,u,v) : [a,b] \to {\mathcal{P}}_{cp}( \mathbb{R})\) are measurable for each \(u,v\in \mathbb{R}\);

\((H_{6})\):

For almost all \(t \in [a,b]\) and \(u,v,\bar{u},\bar{v} \in \mathbb{R}\) with \(\mathcal{B}_{1},\mathcal{B}_{2} \in C([a,b], \mathbb{R}^{+})\),

$$\begin{aligned}& H_{d}(F(t,u,v), F(t,\bar{u},\bar{v})\le \mathcal{B}_{1}(t) \bigl( \vert u-\bar{u} \vert + \vert v- \bar{v} \vert \bigr), \\& H_{d}(G(t,u,v), G(t,\bar{u},\bar{v})\le \mathcal{B}_{2}(t) \bigl( \vert u- \bar{u} \vert + \vert v-\bar{v} \vert \bigr), \end{aligned}$$

and \(d(0,F(t,0,0))\le \mathcal{B}_{1}(t)\), \(d(0,G(t,0,0))\le \mathcal{B}_{2}(t)\).

Then the boundary value problem (1.1) has at least one solution on \([a, b]\) if \(\mathcal{E}_{1}\|\mathcal{B}_{1}\|+\mathcal{E}_{2}\|\mathcal{B}_{2} \|<1\), where \(\mathcal{E}_{1}\), \(\mathcal{E}_{2} \) are given in (2.7).

Proof

Consider the multivalued map \(\Theta : \mathcal{F} \times \mathcal{F} \to {\mathcal {P}}(\mathcal{F} \times \mathcal{F})\) defined at the beginning of the proof of Theorem 3.3. Observe that the fixed points of \(\Theta (u,v)\) are solutions of problem (1.1).

Notice that the sets \(S_{F,(u,v)}\) and \(S_{G,(u,v)}\) are nonempty, and consequently \(\Theta \ne \emptyset \) for each \((u,v)\in \mathcal{F} \times \mathcal{F}\). Then, by assumption \((H_{5})\), the multivalued maps \(F(\cdot , (u,v))\) and \(G(\cdot , (u,v))\) are measurable, and thus admit measurable selections.

Now we shall show that the operator \(\Theta (u,v)\) satisfies the hypothesis of Lemma 4.1. Firstly, we verify that \(\Theta (u,v)\in {\mathcal{P}}_{cl}(\mathcal{F}) \times {\mathcal{P}}_{cl}( \mathcal{F}) \) for each \((u,v) \in \mathcal{F} \times \mathcal{F}\). Let \((h_{k},\tilde{h}_{k}) \in \Theta (u_{k},v_{k})\) such that \((h_{k},\tilde{h}_{k})\) converges to \((h,\tilde{h})\) as \(k \to \infty \) in \(\mathcal{F} \times \mathcal{F}\). So \((h,\tilde{h}) \in \mathcal{F} \times \mathcal{F}\), and there exist \(\hat{f}_{k} \in S_{F,(u_{k},v_{k})}\) and \(\hat{g}_{k} \in S_{G,(u_{k},v_{k})}\) such that, for each \(t \in [a,b]\), we have

$$\begin{aligned}& h_{k}(u_{k},v_{k}) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{k}(z)\,dz \biggr)\,du+\frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+ \beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{k}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}_{k}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{k}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{k}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{k}(z)\,dz \biggr)+ \biggl(-E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{k}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{k}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{k}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned}& \tilde{h_{k}}(u_{k},v_{k}) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{k}(z)\,dz \biggr)\,du+\frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b- \xi ) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{ f}_{k}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{k}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}_{k}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{k}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{k}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{k}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{k}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{k}(z)\,dz \,ds \biggr) \biggr]. \end{aligned}$$

Since F and G have compact values, we pass onto subsequences (if necessary) to get that \(\hat{f}_{k}\) and \(\hat{g}_{k}\) converge to and ĝ in \(L^{1}([a,b],\mathbb{R})\) respectively. Then \(\hat{f}\in S_{F,(u,v)}\) and \(\hat{g}\in S_{G,(u,v)}\), and for each \(t \in [a,b]\), we have

$$\begin{aligned}& h_{k}(u_{k},v_{k}) (t) \\& \quad \to h(u,v) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+ \beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}(z)\,dz \biggr)+ \biggl(-E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned}& \tilde{h_{k}}(u_{k},v_{k}) (t) \\& \quad \to \tilde{h}(u,v) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b- \xi ) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{ f}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}(z)\,dz \,ds \biggr) \biggr]. \end{aligned}$$

Therefore \((u,v) \in \Theta \), and hence \(\Theta (u,v)\) is closed.

Next, we show that Θ is a contraction on \({\mathcal{P}}_{cl}(\mathcal{F}) \times {\mathcal{P}}_{cl}( \mathcal{F})\), that is, there exists a positive number \(\gamma <1\) such that

$$ H_{d} \bigl(\Theta (u,v), \Theta (\bar{u},\bar{v}) \bigr)\le \gamma \bigl( \Vert u-\bar{u} \Vert + \Vert v-\bar{v} \Vert \bigr)\quad \text{for each } u,v, \bar{u}, \bar{v}\in \mathcal{F}. $$

Let \(( u,\bar{u}),(v,\bar{v}) \in \mathcal{F} \times \mathcal{F}\) and \((h_{1},\tilde{h_{1}}) \in \Theta (u,v)\). Then there exist \(\hat{f}_{1}(t) \in S_{F,(u,v)}\) and \(\hat{g}_{1}(t) \in S_{G,(u,v)}\) such that, for each \(t \in [a,b]\), we obtain

$$\begin{aligned}& h_{1}(u,v) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{1}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+ \beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{1}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}_{1}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{1}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{1}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{1}(z)\,dz \biggr)+ \biggl(-E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{1}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{1}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{1}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned}& \tilde{h}_{1}(u,v) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{1}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b- \xi ) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{1}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{1}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}_{1}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{1}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{1}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{1}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{1}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{1}(z)\,dz \,ds \biggr) \biggr]. \end{aligned}$$

By \((H_{6})\), we have that

$$ H_{d} \bigl(F(t,u,v), F(t,\bar{u},\bar{v}) \bigr)\le \mathcal{B}_{1}(t) \bigl( \bigl\vert u(t)- \bar{u}(t) \bigr\vert + \bigl\vert v(t)-\bar{v}(t) \bigr\vert \bigr)$$

and

$$ H_{d} \bigl(G(t,u,v),G(t,\bar{u},\bar{v}) \bigr)\le \mathcal{B}_{2}(t) \bigl( \bigl\vert u(t)- \bar{u}(t) \bigr\vert + \bigl\vert v(t)-\bar{v}(t) \bigr\vert \bigr).$$

So there exist \(\hat{\vartheta _{f}} \in F(t,u(t),v(t))\) and \(\hat{\vartheta _{g}} \in G(t,u(t),v(t))\) such that

$$\begin{aligned}& \bigl\vert \hat{f}_{1}(t)-\hat{\vartheta _{f}} \bigr\vert \le \mathcal{B}_{1}(t) \bigl( \bigl\vert u(t)- \bar{u}(t) \bigr\vert + \bigl\vert v(t)-\bar{v}(t) \bigr\vert \bigr),\\& \bigl\vert \hat{g}_{1}(t)-\hat{\vartheta _{g}} \bigr\vert \le \mathcal{B}_{2}(t) \bigl( \bigl\vert u(t)- \bar{u}(t) \bigr\vert + \bigl\vert v(t)-\bar{v}(t) \bigr\vert \bigr). \end{aligned}$$

Define \(W_{1},W_{2} : [a,b] \to \mathcal{P}(\mathbb{R})\) by

$$ W_{1}(t)= \bigl\{ \hat{\vartheta _{f}} \in L^{1} \bigl([a,b),\mathbb{R}\bigr): \bigl\vert \hat{f}_{1}(t)-\hat{ \vartheta _{f}} \bigr\vert \le \mathcal{B}_{1}(t) \bigl( \bigl\vert u(t)- \bar{u}(t) \bigr\vert + \bigl\vert v(t)-\bar{v}(t) \bigr\vert \bigr) \bigr\} $$

and

$$ W_{2}(t)= \bigl\{ \hat{\vartheta _{g}} \in L^{1} \bigl([a,b),\mathbb{R}\bigr): \bigl\vert \hat{g}_{1}(t)- \hat{ \vartheta _{g}} \bigr\vert \le \mathcal{B}_{2}(t) \bigl( \bigl\vert u(t)-\bar{u}(t) \bigr\vert + \bigl\vert v(t)- \bar{v}(t) \bigr\vert \bigr) \bigr\} .$$

Since the multivalued operators \(W_{1}(t)\cap F(t,u(t)v(t))\) and \(W_{2}(t)\cap G(t,u(t),v(t))\) are measurable, there exist functions \(\hat{f}_{2}(t)\), \(\hat{g}_{2}(t)\) which are measurable selections for \(W_{1}\) and \(W_{2}\). Thus \(\hat{f}_{2}(t) \in F(t,u(t),v(t))\), \(\hat{g}_{2}(t) \in G(t,u(t),v(t))\), and for each \(t \in [a,b]\), we have

$$ \bigl\vert \hat{f}_{1}(t)-\hat{f}_{2}(t) \bigr\vert \le \mathcal{B}_{1}(t) \bigl( \bigl\vert u(t)-\bar{u}(t) \bigr\vert + \bigl\vert v(t)- \bar{v}(t) \bigr\vert \bigr)$$

and

$$ \bigl\vert \hat{g}_{1}(t)-\hat{g}_{2}(t) \bigr\vert \le \mathcal{B}_{2}(t) \bigl( \bigl\vert u(t)-\bar{u}(t) \bigr\vert + \bigl\vert v(t)- \bar{v}(t) \bigr\vert \bigr).$$

For each \(t \in [a,b]\), let us define

$$\begin{aligned}& h_{2}(u,v) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{2}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+ \beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \hat{f}_{2}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}_{2}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{2}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{2}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{2}(z)\,dz \biggr)+ \biggl(-E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{2}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz-E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{2}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{2}(z)\,dz \,ds \biggr) \biggr] \end{aligned}$$

and

$$\begin{aligned}& \tilde{h}_{2}(u,v) (t) \\& \quad = \int _{a}^{t} \biggl(\frac{\mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{2}(z)\,dz \biggr)\,du+ \frac {1}{R} \biggl[ -\alpha _{2}\lambda _{3}(b- \xi ) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{2}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \hat{g}_{2}(z)\,dz \biggr)\,du \,ds \\& \qquad {}-\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u}\hat{g}_{2}(z)\,dz \biggr)\,du \\& \qquad {}+\lambda _{3}(\alpha _{1}+\alpha _{2}) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u}\hat{f}_{2}(z)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2} \lambda _{3}(b- \xi ) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}\lambda _{3}(b- \xi ) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{3} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \hat{f}_{2}(z)\,dz \biggr)+ \biggl(- E_{4}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{3}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{3} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \hat{g}_{2}(z)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\beta _{2}(\alpha _{1}+\alpha _{2}) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{1} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \hat{g}_{2}(z)\,dz \biggr)+ \biggl(- E_{2}\alpha _{2}\lambda _{3}(b-\xi ) \int _{a}^{b} \frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}\lambda _{3}(b-\xi ) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\beta _{2}(\alpha _{1}+ \alpha _{2}) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{3} (\alpha _{1}+\alpha _{2}) \int _{ \xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{1} \int _{a}^{t} \frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \hat{f}_{2}(z)\,dz \,ds \biggr) \biggr]. \end{aligned}$$

Then

$$\begin{aligned}& \bigl\vert h_{1}(u,v) (t)-h_{2}(u,v) (t) \bigr\vert \\& \quad \leq \int _{a}^{t} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} \bigl\vert \hat{f}_{1}(z)- \hat{f}_{2}(z) \bigr\vert \,dz \biggr)\,du \\& \qquad {}+\frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \bigl\vert \hat{f}_{1}(z)- \hat{f}_{2}(z) \bigr\vert \,dz \biggr)\,du \\& \qquad {}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \bigl\vert \hat{g}_{1}(z)- \hat{g}_{2}(z) \bigr\vert \,dz \biggr)\,du \,ds \\& \qquad {}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \bigl\vert \hat{g}_{1}(z)- \hat{g}_{2}(z) \bigr\vert \,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \bigl\vert \hat{f}_{1}(z)- \hat{f}_{2}(z) \bigr\vert \,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \bigl\vert \hat{f}_{1}(z)- \hat{f}_{2}(z) \bigr\vert \,dz \biggr) \\& \qquad {}+ \biggl(-E_{4}\alpha _{2}(\beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz \\& \qquad {}+E_{3}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds -E_{3}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{4}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{a}^{\eta}\frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s} \bigl\vert \hat{g}_{1}(z)- \hat{g}_{2}(z) \bigr\vert \,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \bigl\vert \hat{g}_{1}(z)- \hat{g}_{2}(z) \bigr\vert \,dz \biggr)+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz \\& \qquad {}+E_{1}\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds-E_{1}\lambda _{1}\beta _{2}( \eta -a) \int _{a}^{b}\frac{1}{q(z)}\,dz \\& \qquad {}+E_{2}\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b}\frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \bigl\vert \hat{f}_{1}(z)- \hat{f}_{2}(z) \bigr\vert \,dz \,ds \biggr) \biggr] \\& \quad \leq \int _{a}^{t} \biggl(\frac{\mu _{1}}{p(u)} \int _{a}^{u} \mathcal{B}_{1}(z) \bigl( \bigl\vert u(z)-\bar{u}(z) \bigr\vert + \bigl\vert v(z)-\bar{v}(z) \bigr\vert \bigr)\,dz \biggr)\,du \\& \qquad {}+\frac {1}{R} \biggl[ -\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \mathcal{B}_{1}(z) \bigl( \bigl\vert u(z)- \bar{u}(z) \bigr\vert + \bigl\vert v(z)-\bar{v}(z) \bigr\vert \bigr)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{\eta } \int _{a}^{s} \biggl(\frac{ \mu _{2}}{q(u)} \int _{a}^{u} \mathcal{B}_{2}(z) \bigl( \bigl\vert u(z)- \bar{u}(z) \bigr\vert + \bigl\vert v(z)-\bar{v}(z) \bigr\vert \bigr)\,dz \biggr)\,du \,ds \\& \qquad {}-\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \biggl( \frac{ \mu _{2}}{q(u)} \int _{a}^{u} \mathcal{B}_{2}(z) \bigl( \bigl\vert u(z)-\bar{u}(z) \bigr\vert + \bigl\vert v(z)- \bar{v}(z) \bigr\vert \bigr)\,dz \biggr)\,du \\& \qquad {}+\lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s} \biggl(\frac{ \mu _{1}}{p(u)} \int _{a}^{u} \mathcal{B}_{1}(z) \bigl( \bigl\vert u(z)- \bar{u}(z) \bigr\vert + \bigl\vert v(z)-\bar{v}(z) \bigr\vert \bigr)\,dz \biggr)\,du \,ds \biggr] \\& \qquad {}+\frac{1}{ER} \biggl[ \biggl( E_{4}\alpha _{2}( \beta _{1}+ \beta _{2}) \int _{a}^{b}\frac{1}{p(z)}\,dz-E_{3} \lambda _{1}(\beta _{1}+ \beta _{2}) \int _{a}^{\eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\alpha _{4}\mu _{1}}{p(b)} \int _{a}^{b} \mathcal{B}_{1}(z) \bigl( \bigl\vert u(z)- \bar{u}(z) \bigr\vert + \bigl\vert v(z)-\bar{v}(z) \bigr\vert \bigr)\,dz \biggr) \\& \qquad {}+ \biggl(-E_{4}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz+E_{3} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}-E_{3}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \frac{1}{q(z)}\,dz+E_{4} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{4} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{a}^{\eta} \frac{\lambda _{2}\mu _{2}}{q(s)} \int _{a}^{s}\mathcal{B}_{2}(z) \bigl( \bigl\vert u(z)- \bar{u}(z) \bigr\vert + \bigl\vert v(z)-\bar{v}(z) \bigr\vert \bigr)\,dz \,ds \biggr) \\& \qquad {}+ \biggl( E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz-E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}+E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \frac{1}{q(z)}\,dz-E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds \\& \qquad {}-RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \biggl( \frac{\beta _{4}\mu _{2}}{q(b)} \int _{a}^{b} \mathcal{B}_{2}(z ) \bigl( \bigl\vert u(z)- \bar{u}(z) \bigr\vert + \bigl\vert v(z)-\bar{v}(z) \bigr\vert \bigr)\,dz \biggr) \\& \qquad {}+ \biggl(- E_{2}\alpha _{2}(\beta _{1}+\beta _{2}) \int _{a}^{b} \frac{1}{p(z)}\,dz+E_{1} \lambda _{1}(\beta _{1}+\beta _{2}) \int _{a}^{ \eta } \int _{a}^{s}\frac{1}{q(z)}\,dz \,ds \\& \qquad {}-E_{1}\lambda _{1}\beta _{2}(\eta -a) \int _{a}^{b} \frac{1}{q(z)}\,dz+E_{2} \lambda _{1}\lambda _{3} (\eta -a) \int _{\xi}^{b} \int _{a}^{s}\frac{1}{p(z)}\,dz \,ds+RE_{2} \int _{a}^{t}\frac{1}{p(z)}\,dz \biggr) \\& \qquad {}\times \biggl( \int _{\xi}^{b} \frac{\lambda _{4}\mu _{1}}{p(s)} \int _{a}^{s} \mathcal{B}_{1}(z ) \bigl( \bigl\vert u( z )-\bar{u}(z) \bigr\vert + \bigl\vert v(z)- \bar{v}(z) \bigr\vert \bigr)|\,dz \,ds \biggr) \biggr] \\& \quad \leq \biggl\{ \frac{\mu _{1}}{ \vert R\bar{p} \vert } \biggl[\frac{(b-a)^{2}}{2} \bigl( \vert R \vert +\alpha _{2}(\beta _{1}+\beta _{2}) \bigr) + \frac{\lambda _{1}\lambda _{2}(\eta -a) [(b-a)^{3}-(\xi -a)^{3} ]}{6} \biggr] \\& \qquad {}+\frac{1}{ \vert RE \vert } \biggl[ \biggl( \frac{E_{4}\alpha _{2}(\beta _{1}+\beta _{2})(b-a)}{\bar{p}} + \frac{E_{3}\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{2}}{\bar{2q}}+ \frac{E_{3}\lambda _{1}\beta _{2}(\eta -a) (b-a)}{\bar{q}} \\& \qquad {}+ \frac{E_{4}\lambda _{1}\lambda _{3} (\eta -a) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{4}(b-a)}{\bar{p}} \biggr) \biggl( \frac{\alpha _{4}\mu _{1} (b-a)}{ \vert p(b) \vert } \biggr) \\& \qquad {}+ \biggl( \frac{E_{2}\alpha _{2}(\beta _{1}+\beta _{2})(b-a)}{\bar{p}}+ \frac{E_{1}\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{2}}{2\bar{q}}+ \frac{E_{1}\lambda _{1}\beta _{2}(\eta -a) (b-a)}{\bar{q}} \\& \qquad {}+ \frac{E_{2}\lambda _{1}\lambda _{3} (\eta -a) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{2}(b-a)}{\bar{p}} \biggr) \\& \qquad {}\times \biggl( \frac{\lambda _{4}\mu _{1} [(b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}} \biggr) \biggr] \biggr\} \\& \qquad {}\times \Vert \mathcal{B}_{1} \Vert \bigl( \Vert u-\bar{u} \Vert + \Vert v- \bar{v} \Vert \bigr) \\& \qquad {}+ \biggl\{ \frac{\mu _{2}}{ \vert 2R\bar{q} \vert } \biggl[ \frac{\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{3}}{3}+\lambda _{1} \beta _{2}(\eta -a) (b-a)^{2} \biggr] \\& \qquad {}+\frac{1}{ \vert RE \vert } \biggl[ \biggl( \frac{E_{4}\alpha _{2}(\beta _{1}+\beta _{2})(b-a)}{\bar{p}}+ \frac{E_{3}\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{2}}{2\bar{q}}+ \frac{E_{3}\lambda _{1}\beta _{2}(\eta -a) (b-a)}{\bar{q}} \\& \qquad {}+ \frac{E_{4}\lambda _{1}\lambda _{3} (\eta -a) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{4}(b-a)}{\bar{p}} \biggr) \biggl( \frac{\lambda _{2}\mu _{2} (\eta -a)^{2}}{2\bar{q}} \biggr) \\& \qquad {}+ \biggl( \frac{E_{2}\alpha _{2}(\beta _{1}+\beta _{2})(b-a)}{\bar{p}} + \frac{E_{1}\lambda _{1}(\beta _{1}+\beta _{2})(\eta -a)^{2}}{\bar{2q}}+ \frac{E_{1}\lambda _{1}\beta _{2}(\eta -a) (b-a)}{\bar{q}} \\& \qquad {}+ \frac{E_{2}\lambda _{1}\lambda _{3} (\eta -a) [ (b-a)^{2}-(\xi -a)^{2} ]}{2\bar{p}}+ \frac{RE_{2}(b-a)}{\bar{p}} \biggr) \biggl( \frac{\beta _{4}\mu _{2} (b-a)}{ \vert q(b) \vert } \biggr) \biggr] \biggr\} \\& \qquad {}\times \Vert \mathcal{B}_{2} \Vert \bigl( \Vert u-\bar{u} \Vert + \Vert v- \bar{v} \Vert \bigr) \\& \quad \leq \bigl(\mathcal{D}_{1} \Vert \mathcal{B}_{1} \Vert +\mathcal{D}_{2} \Vert \mathcal{B}_{2} \Vert \bigr) \bigl( \Vert u-\bar{u} \Vert + \Vert v-\bar{v} \Vert \bigr), \end{aligned}$$

which implies that

$$ \bigl\vert h_{1}(u,v) (t)-h_{2}(u,v) (t) \bigr\vert \leq \bigl(\mathcal{D}_{1} \Vert \mathcal{B}_{1} \Vert + \mathcal{D}_{2} \Vert \mathcal{B}_{2} \Vert \bigr) \bigl( \Vert u-\bar{u} \Vert + \Vert v-\bar{v} \Vert \bigr).$$

In a similar manner, one can establish that

$$ \bigl\vert \tilde{h}_{1}(u,v) (t)-\tilde{h}_{2}(u,v) (t) \bigr\vert \leq \bigl(\mathcal{D}_{3} \Vert \mathcal{B}_{1} \Vert +\mathcal{D}_{4} \Vert \mathcal{B}_{2} \Vert \bigr) \bigl( \Vert u-\bar{u} \Vert + \Vert v-\bar{v} \Vert \bigr).$$

In consequence, we get

$$\begin{aligned} \bigl\Vert (h_{1},h_{2}),( \tilde{h}_{1},\tilde{h}_{2}) \bigr\Vert \leq& \bigl[ ( \mathcal{D}_{1}+\mathcal{D}_{3}) \Vert \mathcal{B}_{1} \Vert +(\mathcal{D}_{2}+ \mathcal{D}_{4}) \Vert \mathcal{B}_{2} \Vert ) \bigr] \bigl( \Vert u-\bar{u} \Vert + \Vert v-\bar{v} \Vert \bigr) \\ \leq& \bigl[ \bigl(\mathcal{E}_{1} \Vert \mathcal{B}_{1} \Vert + \mathcal{E}_{2} \Vert \mathcal{B}_{2} \Vert \bigr) \bigr] \bigl( \Vert u-\bar{u} \Vert + \Vert v-\bar{v} \Vert \bigr). \end{aligned}$$

Similarly, by interchanging the roles of \((u,v)\) and \((\bar{u},\bar{v})\), we can obtain that

$$\begin{aligned} H_{d} \bigl(\Theta (u,v), \Theta (\bar{u},\bar{v}) \bigr)\leq \bigl[ \bigl(\mathcal{E}_{1} \Vert \mathcal{B}_{1} \Vert + \mathcal{E}_{2} \Vert \mathcal{B}_{2} \Vert \bigr) \bigr] \bigl( \Vert u-\bar{u} \Vert + \Vert v-\bar{v} \Vert \bigr). \end{aligned}$$

Therefore, it follows by the assumption \(\mathcal{E}_{1} \|\mathcal{B}_{1}\|+\mathcal{E}_{2}\|\mathcal{B}_{2} \|<1\) that Θ is a contraction, So, by Lemma 4.1, Θ has a fixed point \((u,v)\), which is a solution of problem (1.1). The proof is finished. □

5 Examples

Example 5.1

Consider the following self-adjoint coupled system of second-order ordinary differential inclusions with boundary conditions:

$$ \textstyle\begin{cases} ( (\frac{1}{t+13} ) u'(t) )'\in \mu _{1} F(t,u,v),\quad t\in [0,3], \\ ({\frac{8}{4t^{2}+2t+12}} v'(t) )'\in \mu _{2} G(t,u,v),\quad t\in [0,3], \\ \frac{7}{3} u(0)+ \frac{5}{3} u(3) = \frac{1}{7} \int _{0}^{ \frac{1}{2}} v(s)\,ds, \qquad \frac{4}{3} u'(0)+ u'(3) = \frac{2}{7}\int _{0}^{ \frac{1}{2}} v'(s)\,ds, \\ \frac{1}{9} v(0)+ \frac{2}{9} v(3) = \frac{3}{7} \int _{ \frac{5}{2}}^{3} u(s)\,ds, \qquad \frac{3}{9} v'(0)+ \frac{4}{9} v'(3) = \frac{4}{7} \int _{\frac{5}{2}}^{3} u'(s)\,ds. \end{cases} $$
(5.1)

Here, \(p(t)= 1/(t+13)\), \(q(t)=8/(4t^{2}+2t+12)\), \(\mu _{1}=3/36\), \(\mu _{2}=2/93\), \(a=0\), \(b=3\), \(\eta =1/2\), \(\xi =5/2\), \(\lambda _{1}=1/7\), \(\lambda _{2}=2/7\), \(\lambda _{3}=3/7\), \(\lambda _{4}=4/7\), \(\alpha _{1}=7/3\), \(\alpha _{2}=5/3\), \(\alpha _{3}=4/3\), \(\alpha _{4}=1\), \(\beta _{1}=1/9\), \(\beta _{2}=2/9\), \(\beta _{3}=3/9\), \(\beta _{4}=4/9 \), and \(F(t,u,v)\), \(G(t,u,v)\) will be fixed later.

Using the given data, we find that \(|R|\approx 1.323129\neq 0\), \(|E|\approx 115.6354\neq 0\) (R and E are given in (2.4)), \(\bar{p}\approx 0.0625\), \(\bar{q}=0.148148\), \(\mathcal{D}_{1}\approx 17.1389708\), \(\mathcal{D}_{2}\approx 0.06036034\), \(\mathcal{D}_{3}\approx 38.2023705\), \(\mathcal{D}_{4}\approx 4.565128967\), \(\mathcal{E}_{1}\approx 17.19933114\), and \(\mathcal{E}_{2}\approx 42.76749946\) (, and \(\mathcal{D}_{i}\) (\(i=1,\dots ,4\)) are defined in (2.8), while \(\mathcal{E}_{1}\), \(\mathcal{E}_{2}\) are given in (2.7)).

For illustration of Theorem 3.3, we choose

$$ F(t,u,v)= \biggl(\frac{t}{108t^{2}+32} \biggr) \biggl[ \frac{\sqrt{ \vert u(t) \vert }}{ \vert u(t) \vert +65} , \frac{ \vert v(t) \vert ^{3}}{ \vert v(t) \vert ^{3}+1} \biggr]$$

and

$$ G(t,u,v)= \biggl(\frac{\cos ^{2}(\pi t)}{t^{3}+120} \biggr) \biggl[ \frac{ \vert u(t) \vert }{( \vert u(t) \vert +1)^{2}} , \frac{ \vert v(t) \vert ^{5}}{1+ \vert v(t) \vert ^{5}} \biggr].$$

For \(f \in F\), we have

$$\begin{aligned} \vert f \vert \le& \max \biggl\{ \biggl(\frac{t}{108t^{2}+32} \biggr) \biggl[ \frac{\sqrt{ \vert u(t) \vert }}{ \vert u(t) \vert +65} , \frac{ \vert v(t) \vert ^{3}}{ \vert v(t) \vert ^{3}+1} \biggr] \biggr\} \\ \le& 2 \biggl\{ \frac{t}{108t^{2}+32} \biggr\} ,\quad u,v\in \mathbb{R}, t\in [0,3], \end{aligned}$$

and for \(g \in G\), we have

$$\begin{aligned} \vert g \vert \le& \max \biggl\{ \biggl(\frac{\cos ^{2}(\pi t)}{t^{3}+120} \biggr) \biggl[ \frac{ \vert u(t) \vert }{( \vert u(t) \vert +1)^{2}} ,\frac{ \vert v(t) \vert ^{5}}{1+ \vert v(t) \vert ^{5}} \biggr] \biggr\} \\ \le& 2 \biggl\{ \frac{\cos ^{2}(\pi t)}{t^{3}+120} \biggr\} ,\quad u,v\in \mathbb{R} , t\in [0,3]. \end{aligned}$$

Thus

$$ \bigl\Vert F(t,u,v) \bigr\Vert _{\mathcal{P}}:=\sup \bigl\{ \vert f \vert :f \in F(t,u,v) \bigr\} \le 2 \biggl[ \frac{t}{108t^{2}+32} \biggr]= p_{1}(t) \bigl[\psi _{1} \bigl( \Vert u \Vert \bigr) + \phi _{1} \bigl( \Vert v \Vert \bigr) \bigr]$$

and

$$ \bigl\Vert G(t,u,v) \bigr\Vert _{\mathcal{P}}:=\sup \bigl\{ \vert g \vert :g\in G(t,u,v) \bigr\} \le 2 \biggl[ \frac{\cos ^{2} (\pi t)}{t^{3}+120} \biggr]= p_{2}(t) \bigl[\psi _{2} \bigl( \Vert u \Vert \bigr) + \phi _{2} \bigl( \Vert v \Vert \bigr) \bigr],$$

with \(p_{1}(t)=\frac{t}{108t^{2}+32}\), \(p_{2}(t)= \frac{\cos ^{2} (\pi t)}{t^{3}+120}\), \(\psi _{1}(\|u\|)=\phi _{1}(\|v\|)= \psi _{2}(\|u\|) =\phi _{2}(\|v\|)=1\). Furthermore, it is found that \(N >N_{1}\), where \(N_{1}=0.81272506\) (N is given in \((H_{3})\)). Clearly, all the hypotheses of Theorem 3.3 are satisfied. Thus, there exists at least one solution for problem (5.1) on \([0,3]\).

Example 5.2

Consider the following boundary value problem of self-adjoint coupled second-order ordinary differential inclusions:

$$ \textstyle\begin{cases} (\frac{1}{t^{2}+2}u'(t) )'\in \mu _{1} F(t,u,v),\quad t\in [0,2], \\ ({\frac{2}{t+6}} v'(t) )'\in \mu _{2} G(t,u,v),\quad t\in [0,2], \\ \frac{1}{2} u(0)+ u(2) = \frac{2}{3} \int _{0}^{ \frac{1}{4}} v(s)\,ds, \qquad \frac{5}{8} u'(0)+ \frac{4}{7} u'(2) = \int _{0}^{ \frac{1}{4}} v'(s)\,ds, \\ 2 v(0)+ \frac{1}{6} v(2) = \frac{3}{4} \int _{1}^{2} u(s)\,ds,\qquad \frac{1}{5} v'(0)+ \frac{3}{5} v'(2) = \frac{5}{3} \int _{1}^{2} u'(s)\,ds , \end{cases} $$
(5.2)

where \(p(t)= 1/(t^{2}+2)\), \(q(t)=2/(t+6)\), \(\mu _{1}=1/16\), \(\mu _{2}=3/43\), \(a=0\), \(b=2\), \(\eta =1/4\), \(\xi =1\), \(\lambda _{1}=2/3\), \(\lambda _{2}=1\), \(\lambda _{3}=4/3\), \(\lambda _{4}=5/3\), \(\alpha _{1}=1/2\), \(\alpha _{2}=1\), \(\alpha _{3}=5/8\), \(\alpha _{4}=4/7\), \(\beta _{1}=2\), \(\beta _{2}=1/6\), \(\beta _{3}=1/5\), \(\beta _{4}=3/5 \), and \(F(t,u,v)\), \(G(t,u,v)\) will be fixed later.

Using the given values, it is found that \(|R|\approx 3.083\neq 0\), \(|E|\approx 8.506200\neq 0\) (R and E are given in (2.4)), \(\bar{p}\approx 0.16\), \(\bar{q}=0.25\), \(\mathcal{D}_{1}\approx 6.31401038\), \(\mathcal{D}_{2}\approx 0.72123977\), \(\mathcal{D}_{3}\approx 12.94560512\), \(\mathcal{D}_{4}\approx 3.23687872\), \(\mathcal{E}_{1}\approx 7.035250153\), and \(\mathcal{E}_{2}\approx 16.18248385\) (, and \(\mathcal{D}_{i}\) (\(i=1,\dots ,4\)) are defined in (2.8), while \(\mathcal{E}_{1}\), \(\mathcal{E}_{2}\) are given in (2.7)).

For illustrating Theorem 4.3, we take the following multivalued maps \(F, G:[0,2]\times \mathbb{R} \to \mathcal{P}(\mathbb{R})\):

$$\begin{aligned}& F(t,u,v) = \biggl[ \biggl(\frac{1}{3t+160} \biggr) \biggl( \frac{ \vert u(t) \vert }{ \vert u(t) \vert +1},\frac{ \vert v(t) \vert }{3\sqrt{t+ \vert v(t) \vert }} \biggr)+ \frac{1}{190} \biggr], \\& G(t,u,v) = \biggl[ \biggl(\frac{1}{t^{2}+188} \biggr) \biggl(\tan ^{-1} u(t), \frac{ \vert v(t) \vert }{1+ \vert v(t) \vert ^{4}} \biggr)+\frac{1}{200} \biggr]. \end{aligned}$$
(5.3)

Letting \(\mathcal{B}_{1}(t)=\frac{1}{3t+160}\) and \(\mathcal{B}_{2}(t)=\frac{1}{t^{2}+188}\), we find that \(H_{d}(F(t,u,v),F(t,\bar{u},\bar{v}))\le \mathcal{B}_{1}(t)(|u- \bar{u}|+|v-\bar{v}|)\) and \(H_{d}(G(t,u,v),G(t,\bar{u},\bar{v}))\le \mathcal{B}_{2}(t)(|u- \bar{u}|+|v-\bar{v}|)\). Clearly, \(d(0,F(t,0,0))=\frac{1}{190}\le \mathcal{B}_{1}(t)\) and \(d(0,G(t,0,0))=\frac{1}{200}\le \mathcal{B}_{2}(t)\) for almost all \(t \in [0,2]\). Moreover, \(\|\mathcal{B}_{1}\|=1/160\) and \(\|\mathcal{B}_{2}\|=1/188\) and \(\mathcal{E}_{1}\|\mathcal{B}_{1}\|+\mathcal{E}_{2}\|\mathcal{B}_{2} \| \approx 0.1300473552 < 1\). Thus all the assumptions of Theorem 4.3 hold true. Therefore, by conclusion of Theorem 4.3, problem (5.2) with F, G given by (5.3) has at least one solution on \([0,2]\).

6 Conclusions

We have developed the existence theory for a self-adjoint coupled system of nonlinear second-order ordinary differential inclusions supplemented with nonlocal integral multi-strip coupled boundary conditions on an arbitrary domain. Our study includes the cases of convex as well as nonconvex multivalued maps. Nonlinear alternative of Leray–Schauder type for multivalued maps and Covitz and Nadler’s fixed point theorem for contractive multivalued maps are applied to prove the main results. Numerical examples are constructed for the illustration of the obtained results. Our results are new in the given configuration and enrich the related literature. Moreover, several new results can be recorded as special cases of the present work by fixing the parameters appearing in the system. For example, we obtain the existence results for an antiperiodic multivalued boundary value problem of self-adjoint coupled second-order ordinary differential inclusions by fixing \(\alpha _{i}=1\), \(\beta _{i}=1\), \(\lambda _{i}=0\), \(i =1, 2, 3, 4\), in the results of this paper, which are indeed new.