Skip to main content

Advertisement

Log in

The Exosomal Long Noncoding RNA aHIF is Upregulated in Serum From Patients With Endometriosis and Promotes Angiogenesis in Endometriosis

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective: The transfer of long noncoding RNAs (IncRNAs) via exosomes to modulate recipient cells represents an important mechanism for disease progression. Antisense hypoxia-inducible factor (aHIF) is a well-known angiogenesis-related lncRNA. Here, we aimed to investigate the clinical implications of aHIF and exosomal aHIF in endometriosis and the involvement of exosome-shuttled aHIF in endometriosis angiogenesis. Study Design: The distribution and expression of aHIF in ectopic, eutopic, and normal endometria was evaluated. Serum exosomal aHIF levels in patients with endometriosis were tested. The correlation between serum exosomal aHIF and aHIF expression in ectopic endometria was analyzed. Endometriotic cyst stromal cells (ECSCs)-derived exosomes were characterized. The internalization of exosomes by human umbilical vein endothelial cells (HUVECs) was observed. A series of in vitro assays were conducted to investigate the roles and mechanisms of exosomal aHIF in endometriosis angiogenesis. Results: Clinically, aHIF was highly expressed in ectopic endometria and serum exosomes in patients with endometriosis. Serum exosomal aHIF was significantly correlated to aHIF expression in matched ectopic endometria. In vitro, PKH67-labeled exosomes derived from aHIF high expression ECSCs were effectively internalized by recipient HUVECs. Notably, exosome-shuttled aHIF was transferred from ECSCs to HUVECs, which in turn elicited proangiogenic behavior in HUVECs by activating vascular endothelial growth factor (VEGF)-A, VEGF-D, and basic fibroblast growth factor, thereby facilitating endometriosis angiogenesis. Conclusion: Our study illustrates a potential cell-cell communication between ECSCs and HUVECs in an ectopic environment, provides a novel mechanistic model explaining how ECSCs induce angiogenesis from the perspective of the “exosomal transfer of aHIF,” and highlights the clinical value of circulating exosomal aHIF in endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–1799.

    PubMed  Google Scholar 

  2. Culley L, Law C, Hudson N, et al. The social and psychological impact of endometriosis on women's lives: a critical narrative review. Hum Reprod Update. 2013;19(6):625–639.

    Article  PubMed  Google Scholar 

  3. Aznaurova YB, Zhumataev MB, Roberts TK, Aliper AM, Zhavoronkov AA. Molecular aspects of development and regulation of endometriosis. Reprod Biol Endocrinol. 2014;12:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kobayashi H, Uekuri C, Shigetomi H. Towards an understanding of the molecular mechanism of endometriosis: unbalancing epithelial-stromal genetic conflict. Gynecol Endocrinol. 2014;30(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  5. Guo SW, Du Y, Liu X. Endometriosis-derived stromal cells secrete thrombin and thromboxane A2, inducing platelet activation. Reprod Sci. 2016;23(8):1044–1052.

    Article  CAS  PubMed  Google Scholar 

  6. Filippi I, Carrarelli P, Luisi S, et al. Different expression of hypoxic and angiogenic factors in human endometriotic lesions. Reprod Sci. 2016;23(4):492–497.

    Article  CAS  PubMed  Google Scholar 

  7. Yang HL, Zhou WJ, Chang KK, et al. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β. Reproduction. 2017;154(6):815–825.

    Article  CAS  PubMed  Google Scholar 

  8. Laschke MW, Menger MD. In vitro and in vivo approaches to study angiogenesis in the pathophysiology and therapy of endometriosis. Hum Reprod Update. 2007;13(4):331–342.

    Article  CAS  PubMed  Google Scholar 

  9. Maas JW, Groothuis PG, Dunselman GA, de Goeij AF, Struyker Boudier HA, Evers JL. Endometrial angiogenesis throughout the human menstrual cycle. Hum Reprod. 2001;16(8):1557–1561.

    Article  CAS  PubMed  Google Scholar 

  10. Sampson JA. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am J Pathol. 1927;3(2):93–110.43.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rocha AL, Reis FM, Taylor RN. Angiogenesis and endometriosis. Obstet Gynecol Int. 2013;2013:859619. doi:10.1155/2013/859619.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gilabert-Estelles J, Ramon LA, Espana F, et al. Expression of angiogenic factors in endometriosis: relationship to fibrinolytic and metalloproteinase systems. Hum Reprod. 2007;22(8):2120–2127.

    Article  CAS  PubMed  Google Scholar 

  13. Yang RQ, Teng H, Xu XH, et al. Microarray analysis of micro-RNA deregulation and angiogenesis-related proteins in endometriosis. Genet Mol Res. 2016;15(2).

    Google Scholar 

  14. Mari-Alexandre J, Garcia-Oms J, Barcelo-Molina M, et al. Micro-RNAs and angiogenesis in endometriosis. Thromb Res. 2015; 135(suppl 1):S38–S40.

    Article  CAS  PubMed  Google Scholar 

  15. Ge R, Tan E, Sharghi-Namini S, Asada HH. Exosomes in cancer microenvironment and beyond: have we overlooked these extracellular messengers? Cancer Microenviron. 2012;5(3):323–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge oftheir composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820(7):940–948.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Q, Heon M, Zhao Z, He M. Microfluidic engineering of exosomes: editing cellular messages for precision therapeutics. Lab Chip. 2018;18(12):1690–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li L, Li C, Wang S, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 2016;76(7):1770–1780.

    Article  CAS  PubMed  Google Scholar 

  19. Ding J, Xu Z, Zhang Y, et al. Exosome-mediated miR-222 transferring: an insight into NF-κB-mediated breast cancer metastasis. Exp Cell Res. 2018;369(1):129–138.

    Article  CAS  PubMed  Google Scholar 

  20. Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32(3-4):623–642.

    Article  CAS  PubMed  Google Scholar 

  21. Yu T, Wang X, Zhi T, et al. Delivery of MGMT mRNA to glioma cells by reactive astrocyte-derived exosomes confers a temozolo-mideresistance phenotype. Cancer Lett. 2018;433:210–220.

    Article  CAS  PubMed  Google Scholar 

  22. Bobrie A, Colombo M, Raposo G, Thery C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659–1668.

    Article  CAS  PubMed  Google Scholar 

  23. Qadir F, Aziz MA, Sari CP, et al. Transcriptome reprogramming by cancer exosomes: identification of novel molecular targets in matrix and immune modulation. Mol Cancer. 2018;17(1):97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Silva VO, Maia MM, Torrecilhas AC, et al. Extracellular vesicles isolated from Toxoplasma gondii induce host immune response. Parasite Immunol. 2018;40(9):e12571.

    Article  PubMed  CAS  Google Scholar 

  25. Willis GR, Fernandez-Gonzalez A, Anastas J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018;197(1):104–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li XJ, Ren ZJ, Tang JH, Yu Q. Exosomal microRNA MiR-1246 promotes cell proliferation, invasion and drug resistance by targeting CCNG2 in breast cancer. Cell Physiol Biochem. 2017;44(5):1741–1748.

    Article  CAS  PubMed  Google Scholar 

  27. Qiu JJ, Lin YY, Ding JX, Feng WW, Jin HY, Hua KQ. Long non-coding RNA ANRIL predicts poor prognosis and promotes invasion/metastasis in serous ovarian cancer. Int J Oncol. 2015;46(6):2497–2505.

    Article  CAS  PubMed  Google Scholar 

  28. Qiu JJ, Wang Y, Ding JX, Jin HY, Yang G, Hua KQ. The long non-coding RNA HOTAIR promotes the proliferation of serous ovarian cancer cells through the regulation of cell cycle arrest and apoptosis. Exp Cell Res. 2015;333(2):238–248.

    Article  CAS  PubMed  Google Scholar 

  29. Huang JK, Ma L, Song WH, et al. LncRNA-MALAT1 promotes angiogenesis of thyroid cancer by modulating tumor-associated macrophage FGF2 protein secretion. J Cell Biochem. 2017;118(12):4821–4830.

    Article  CAS  PubMed  Google Scholar 

  30. Lang HL, Hu GW, Chen Y, et al. Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3. Eur Rev Med Pharmacol Sci. 2017;21(5):959–972.

    PubMed  Google Scholar 

  31. Conigliaro A, Costa V, Lo Dico A, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang A, Wang G, Jia L, Su T, Zhang L. Exosome-mediated microRNA-138 and vascular endothelial growth factor in endo-metriosis through inflammation and apoptosis via the nuclear factor-B signaling pathway. Int J Mol Med. 2019;43(1):358–370.

    CAS  PubMed  Google Scholar 

  33. Wu D, Lu P, Mi X, Miao J. Exosomal miR-214 from endometrial stromal cells inhibits endometriosis fibrosis. Mol Hum Reprod. 2018;24(7):357–365.

    CAS  PubMed  Google Scholar 

  34. Sun H, Li D, Yuan M, Li Q, Li N, Wang G. Eutopic stromal cells of endometriosis promote neuroangiogenesis via exosome pathway. Biol Reprod. 2018. doi:10.1093/biolre/ioy212.

    Google Scholar 

  35. Harp D, Driss A, Mehrabi S, et al. Exosomes derived from endo-metriotic stromal cells have enhanced angiogenic effects in vitro. Cell Tissue Res. 2016;365(1):187–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li L, Wang M, Mei Z, et al. lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1 alpha by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother. 2017;96:165–172.

    Article  CAS  PubMed  Google Scholar 

  37. Larsen H, Muz B, Feldmann M, Paleolog E. Hypoxia and cytokines induce a natural antisense transcript (aHIF) to regulate HIF-1 mediated angiogenesis in rheumatoid arthritis. Vasc Pharmacol (Barbara: Feldmann). 2012;56:321.

    Article  Google Scholar 

  38. Mineo M, Ricklefs F, Rooj AK, et al. The long non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep. 2016;15(11):2500–2509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Span PN, Rao JU, Oude Ophuis SB, et al. Overexpression of the natural antisense hypoxia-inducible factor-1alpha transcript is associated with malignant pheochromocytoma/paraganglioma. Endocr Relat Cancer. 2011;18(3):323–331.

    Article  CAS  PubMed  Google Scholar 

  40. Cayre A, Rossignol F, Clottes E, Penault-Llorca F. aHIF but not HIF-1a transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res. 2003;5(6):R223–R230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guan YT, Huang YQ, Wu JB, et al. Overexpression of chloride channel-3 is associated with the increased migration and invasion ability of ectopic endometrial cells from patients with endometriosis. Hum Reprod. 2016;31(5):986–998.

    Article  CAS  PubMed  Google Scholar 

  42. Zhan H, Ma J, Ruan F, et al. Elevated phosphatase of regenerating liver 3 (PRL-3) promotes cytoskeleton reorganization, cell migration and invasion in endometrial stromal cells from endometrioma. Hum Reprod. 2016;31(4):723–733.

    Article  CAS  PubMed  Google Scholar 

  43. Li L, Wang M, Mei Z, et al. lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1a by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother. 2017;96:165–172.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang F, Liu XL, Wang W, et al. Expression of MMIF, HIF-1a and VEGF in serum and endometrial tissues of patients with endometriosis. Curr Med Sci. 2018;38(3):499–504.

    Article  CAS  PubMed  Google Scholar 

  45. Liu T, Zhang X, Gao S, et al. Exosomal long noncoding RNA CRNDE-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. Oncotarget. 2016;7(51):85551–85563.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Isin M, Uysaler E, Ozgur E, et al. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet. 2015;6:168.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zhang or Ke-Qin Hua.

Supplemental Material

Supplemental Material

Supplemental material for this article is available online.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, JJ., Lin, XJ., Zheng, TT. et al. The Exosomal Long Noncoding RNA aHIF is Upregulated in Serum From Patients With Endometriosis and Promotes Angiogenesis in Endometriosis. Reprod. Sci. 26, 1590–1602 (2019). https://doi.org/10.1177/1933719119831775

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719119831775

Keywords

Navigation