Skip to main content
Log in

Finite thermostats in classical and quantum nonequilibrium

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Models for studying systems in stationary states but out of equilibrium have often empirical nature and very often break the fundamental time reversal symmetry. Here, a formal interpretation will be discussed of the widespread idea that, in any event, the particular friction model choice should not matter physically. The proposal is, quite generally, that for the same physical system a time reversible model should be possible. Examples about the Navier–Stokes equations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Feynman, F.L. Vernon, Ann. Phys. 24, 118 (1963)

    Article  ADS  Google Scholar 

  2. R. Becker, Electromagnetic Fields and Interactions (Blaisdell, New-York, 1964)

  3. D. Abraham, E. Baruch, G. Gallavotti, A. Martin-Löf, Stud. Appl. Math. 50, 121 (1971)

    Article  Google Scholar 

  4. D. Abraham, E. Baruch, G. Gallavotti, A. Martin-Löf, Stud. Appl. Math. 51, 211 (1972)

    Article  Google Scholar 

  5. H-D. Meyer, W. Miller, J. Chem. Phys. 70, 3214 (1978)

    Article  ADS  Google Scholar 

  6. F. Mauri, R. Car, E. Tosatti, Europhys. Lett. 24, 431 (1993)

    Article  ADS  Google Scholar 

  7. J.L. Alonso, A. Castro, J. Clemente-Gallardo, J.C. Cuchi, P. Echenique, F. Falcetom, J. Phys. A 44, 395004 (2011)

    Article  MathSciNet  Google Scholar 

  8. P. Hänggi, H. Thomas, Phys. Rep. 88, 207 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Hänggi, G.L. Ingold, Chaos 15, 026105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. G. Gallavotti, D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)

    Article  ADS  Google Scholar 

  11. G. Gallavotti, Phys. Rev. Lett. 77, 4334 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. G. Gallavotti, Phys. Lett. A 223, 91 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  13. G. Gallavotti, Physica D 112, 250 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. V. Franceschini, C. Tebaldi, Meccanica 20, 207 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Frazer, Arch. Hist. Exact Sci. 28, 197 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Ruelle, Turbulence, Strange Attractors and Chaos (World Scientific, New-York, 1995)

  17. Ya.G. Sinai, Topics in ergodic theory, in Princeton Mathematical Series (Princeton University Press, Princeton, 1994), Vol. 44

  18. G. Gallavotti, D. Cohen, J. Stat. Phys. 80, 931 (1995)

    Article  ADS  Google Scholar 

  19. O. Nakabeppu, T. Suzuki, J. Therm. Anal. Calorim. 69, 727 (2002)

    Article  Google Scholar 

  20. G. Gallavotti, Nonequilibrium and Irreversibility, Theoretical and Mathematical Physics (Springer-Verlag, Heidelberg 2014)

  21. G. Gallavotti, E. Presutti, J. Math. Phys. 51, 015202 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2472 (1985)

    Article  ADS  Google Scholar 

  23. F. Strocchi, Rev. Mod. Phys. 38, 36 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Gallavotti, E. Presutti, J. Stat. Phys. 139, 618 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. G. Gallavotti, E. Presutti, J. Math. Phys. 51, 0353303 (2010)

    ADS  Google Scholar 

  26. D.J. Evans, G.P. Morriss, Statistical Mechanics of Nonequilibrium Fluids (Academic Press, New-York, 1990)

  27. V. Jaksić, C.A. Pillet, J. Stat. Phys. 108, 787 (2002)

    Article  ADS  Google Scholar 

  28. E. Langmann, J.L. Lebowitz, V. Mastropietro, P. Moosavi, Commun. Math. Phys. 349, 551 (2017)

    Article  ADS  Google Scholar 

  29. G. Gallavotti, Friction? reversibility? and chaotic hypothesis, in Proceedings IHP Workshop on “Stochastic Mechanics of Non Equilibrium”, 2017 Vol. 1, pp. 1–13

  30. G. Gallavotti, L. Rondoni, E. Segre, Physica D 187, 358 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Gallavotti, V. Lucarini, J. Stat. Phys. 156, 1027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. L. Rondoni, C. Mejia-Monasterio, Nonlinearity 20, R1 (2007)

    Article  ADS  Google Scholar 

  33. Z.S. She, E. Jackson, Phys. Rev. Lett. 70, 1255 (1993)

    Article  ADS  Google Scholar 

  34. G. Gallavotti, Foundations of Fluid Dynamics, 2nd edn. (Springer Verlag, Berlin, 2005)

  35. F. Bonetto, G. Gallavotti, Commun. Math. Phys. 189, 263 (1997)

    Article  ADS  Google Scholar 

  36. S. Kuksin, A. Shirikian, Mathematics of Two-Dimensional Turbulence (Cambridge University Press, Cambridge, 2012)

  37. V. Franceschini, C. Tebaldi, J. Stat. Phys. 21, 707 (1979)

    Article  ADS  Google Scholar 

  38. V. Franceschini, Truncated Navier–Stokes Equations on a Two-Dimensional Torus, in Coupled Nonlinear Oscillators, Mathematical Studies, edited by J. Chandra, A.C. Scott (North-Holland, Amsterdam, 1983), Vol. 80, pp. 21–29

  39. V. Franceschini, C. Tebaldi, F. Zironi, J. Stat. Phys. 35, 387 (1984)

    Article  ADS  Google Scholar 

  40. V. Franceschini, C. Giberti, M. Nicolini, J. Stat. Phys. 50, 879 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Gallavotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallavotti, G. Finite thermostats in classical and quantum nonequilibrium. Eur. Phys. J. Spec. Top. 227, 217–229 (2018). https://doi.org/10.1140/epjst/e2018-700096-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-700096-x

Navigation