Skip to main content
Log in

Mixed Spin-1/2 and Spin-5/2 Model by Renormalization Group Theory: Recursion Equations and Thermodynamic Study

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the renormalization group approximation, specifically the Migdal-Kadanoff technique, we investigate the Blume-Capel model with mixed spins S = 1/2 and S = 5/2 on d-dimensional hypercubic lattice. The flow in the parameter space of the Hamiltonian and the thermodynamic functions are determined. The phase diagram of this model is plotted in the (anisotropy, temperature) plane for both cases d = 2 and d = 3 in which the system exhibits the first and second order phase transitions and critical end-points. The associated fixed points are drawn up in a table, and by linearizing the transformation at the vicinity of these points, we determine the critical exponents for d = 2 and d = 3. We have also presented a variation of the free energy derivative at the vicinity of the first and second order transitions. Finally, this work is completed by a discussion and comparison with other approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kahn, O.: Molecular Magnetism. VCH, New York (1993)

    Google Scholar 

  2. Mansuripur, M.: J. Appl. Phys. 61, 1580 (1987)

    Article  ADS  Google Scholar 

  3. Prinz, G.A.: Science 282, 1660 (1998)

    Article  Google Scholar 

  4. Mallah, T., Thiébaut, S., Verdaguer, M., Veillet, P.: Science 262, 1554 (1993)

    Article  ADS  Google Scholar 

  5. Benayad, N., Zittartz, J.: Z. Phys. Cond. B - Matt. 81, 107 (1990)

    Article  ADS  Google Scholar 

  6. Kaneyoshi, T., Sarmento, E.F., Fittipaldi, I.F.: Phys. Stat. Sol. (b) 150, 261 (1988)

    Article  ADS  Google Scholar 

  7. Kaneyoshi, T., Chen, J.C.: J. Magn. Magn. Mater. 98, 201 (1991)

    Article  ADS  Google Scholar 

  8. Plascak, J.A.: Physica A 198, 655 (1993)

    Article  ADS  Google Scholar 

  9. Ekiz, C., Keskin, M.: Physica A 317, 517 (2003)

    Article  ADS  Google Scholar 

  10. Zhang, G.M., Yang, C.Z.: Phys. Rev. B 48, 9452 (1993)

    Article  ADS  Google Scholar 

  11. Buendía, G.M., Novotny, M.A.: J. Phys. Condens. Matter 9, 5951 (1997)

    Article  ADS  Google Scholar 

  12. Zaim, A., Kerouad, M., Belmamoun, Y.: Physica B 404, 2280 (2009)

    Article  ADS  Google Scholar 

  13. De Resende, H.F.V., Sá Barreto, F. C., Plascak, J.A.: Physica A 149, 606 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  14. Abubrig, O.F., Horváth, D., Bobák, A., Jaščur, M.: Physica A 296, 437 (2001)

    Article  ADS  Google Scholar 

  15. Albayrak, E.: Phys, Int. J. Mod. B 17, 1087 (2003)

    Article  ADS  Google Scholar 

  16. Albayrak, E.: Phys. Stat. Sol. (b) 239, 411 (2003)

    Article  ADS  Google Scholar 

  17. Xin, Z.H., Wei, G.Z., Liu, T.S.: J. Magn. Magn. Mater. 188, 65 (1998)

    Article  ADS  Google Scholar 

  18. Madani, M., Gaye, A., El Bouziani, M., Alrajhi, A.: Physica A 437, 396 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. El Bouziani, M., Madani, M., Gaye, A., Alrajhi, A., Cond, W.J.: Matt. Phys. 6, 109 (2016)

    Google Scholar 

  20. Mohamad, H.K.: Inter. J. Adv. Res. 2, 442 (2014)

    Google Scholar 

  21. Jabar, A., Belhaj, A., Labrim, H., Bahmad, L., Hassanain, N.: J. Supercond. Nov. Magn. 28, 2721 (2015)

    Article  Google Scholar 

  22. Abubrig, F.: Open J. Appl. Sci. 3, 270 (2013)

    Article  ADS  Google Scholar 

  23. Jiang, W., Wei, G.Z., Xin, Z.H.: Physica A 293, 455 (2001)

    Article  ADS  Google Scholar 

  24. Benayad, N., Dakhama, A., Klümper, A., Zittartz, J.: Ann. Physik 5, 387 (1996)

    ADS  MathSciNet  Google Scholar 

  25. Bobák, A., Jurcisin, M.: J. Phys. IV France 7, C1–179 (1997)

    Article  Google Scholar 

  26. Bourass, M., Zradba, A., Zouhair, S., El Antari, A., El Bouziani, M., Madani, M., Alrajhi, A.: J. Supercond. Nov. Magn. (2017). https://doi.org/10.1007/s10948-017-4242-y

  27. Hachem, N., Madani, M., Lafhal, A., El Antari, A., Alrajhi, A., El Bouziani, M.: Supercond. Nov. Magn. (2017). https://doi.org/10.1007/s10948-017-4468-8

  28. Albayrak, E., Alçi, A.: Physica A 345, 48 (2005)

    ADS  Google Scholar 

  29. Zhang, Q., Wei, G., Gu, W.: Phys. Stat. Sol. (b) 242, 924 (2005)

    Article  ADS  Google Scholar 

  30. Albayrak, E., Yigit, A.: Phys. Lett. A 353, 121 (2006)

    Article  ADS  Google Scholar 

  31. Yessoufou, R.A., Amoussa, S.H., Hontinfinde, F.: Cent. Eur. J. Phys. 7, 555 (2009)

    Google Scholar 

  32. Wei, G.Z., Miao, H.L.: Commun. Theor. Phys. 51, 756 (2009)

    Article  ADS  Google Scholar 

  33. Karimou, M., Yessoufou, R.A., Oke, T.D., Kpadonou, A., Hontinfinde, F.: Condens. Matt. Phys. 19, 33003 (2016)

    Article  Google Scholar 

  34. Deviren, B., Keskin, M., Canko, O.: Physica A 388, 1835 (2009)

    Article  ADS  Google Scholar 

  35. Migdal, A.A.: Zh. Eksp. Teor. Fiz. 69, 1457 (1975). [Sov. Phys. JETP 42 (1975) 743]

    Google Scholar 

  36. Kadanoff, L.P.: Ann. Phys. 100, 359 (1976)

    Article  ADS  Google Scholar 

  37. Bakchich, A., Bassir, A., Benyoussef, A.: Physica A 195, 188 (1993)

    Article  ADS  Google Scholar 

  38. Hachem, N., Lafhal, A., Zahir, H., El Bouziani, M., Madani, M., Alrajhi, A.: Superlatt. Microstr. 111, 927 (2017)

    Article  ADS  Google Scholar 

  39. Hasenbusch, M.: Phys. Rev. B 82, 174433 (2010)

    Article  ADS  Google Scholar 

  40. Nienhuis, B., Nauenberg, M.: Phys. Rev. Lett. 35, 477 (1975)

    Article  ADS  Google Scholar 

  41. Lipowsky, R., Wagner, H.: Z. Phys. B - Condens. Matter. 42, 355 (1981)

    Article  ADS  Google Scholar 

  42. Onsager, L.: Phys. Rev. 65, 117 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  43. Bahmad, L., Benayad, M.R., Benyoussef, A., El Kenz, A.: Acta Phys. Pol. A 119, 740 (2011)

    Article  Google Scholar 

  44. Ngantso, G.D., El Amraoui, Y., Benyoussef, A., El Kenz, A.: J. Magn. Magn. Mater. 423, 337 (2017)

    Article  ADS  Google Scholar 

  45. Bakchich, A., El Bouziani, M.: J. Phys. Condens. Matter 11, 6147 (1999)

    Article  ADS  Google Scholar 

  46. Albayrak, E., Karimou, M.: Int. J. Theor. Phys. (2017). https://doi.org/10.1007/s10773-017-3605-2

  47. Hoston, W., Berker, A.N.: Phys. Rev. Lett. 67, 1027 (1991)

    Article  ADS  Google Scholar 

  48. Lipowsky, R.: Z. Phys. B - Condens. Matter 51, 165 (1983)

    Article  ADS  Google Scholar 

  49. Boechat, B., Filgueiras, R.A., Cordeiro, C., Branco, N.S.: Physica A 304, 429 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El Bouziani.

Appendices

Appendix A

The six forms Fi,j obtained from (3), (4) and (5):

  • For (S1, S4) = {(1/2, 5/2); (− 1/2,− 5/2)}

$$\begin{array}{@{}rcl@{}} F_{\frac{1}{2},\frac{5}{2}}&\,=\,&2\text{e}^{\frac{75}{4}\frac{{\Delta}_{2}}{z}+\frac{1875}{16}\frac{{\Delta}_{4}}{z}}\left( \text{e}^{\frac{5}{4}j+\frac{125}{16}C+\frac{3125}{64}F}ch\left( \frac{5}{2}+\frac{125}{8}C+\frac{3125}{32}F\right)+\text{e}^{\frac{5}{4}J-\frac{125}{16}C-\frac{3125}{64}}\right)\\ &&\text{e}^{\frac{43}{4}\frac{{\Delta}_{2}}{z}+\frac{787}{16}\frac{{\Delta}_{4}}{z}}\left( \text{e}^{\frac{3}{4}J+\frac{27}{16}C+\frac{243}{64}F}ch\left( 2J\,+\,\frac{19}{2}C \,+\, \frac{421}{8}F \right)\text{e}^{\frac{3}{4}J-\frac{27}{16}C-\frac{243}{64}F}ch\right.\\&&\left.\times\left( \frac{1}{2}J\,+\,\frac{49}{8}C\,+\,\frac{1441}{32}F\right)\right)\\ &&\text{e}^{\frac{24}{7}\frac{{\Delta}_{2}}{z}+\frac{627}{16}\frac{{\Delta}_{4}}{z}}\!\left( \text{e}^{\frac{1}{4}J+\frac{1}{16}C+\frac{1}{64}F}ch\!\left( \frac{3}{2}J\,+\,\frac{63}{8}C \,+\, \frac{1563}{32}F \right)\text{e}^{\frac{1}{4}J-\frac{1}{16}C-\frac{1}{64}F}ch\right.\\&&\left.\times\left( J\,+\,\frac{31}{4}C\,+\,\frac{781}{16}F\right)\right) \end{array} $$
(12)
  • For (S1, S4 = {(1/2,− 5/2); (− 1/2, 5/2)})

$$ F_{\frac{1}{2},\frac{-5}{2}}=F_{\frac{-1}{2},\frac{5}{2}}=F_{\frac{1}{2},\frac{5}{2}}(J=-J,C=-C,F=-F) $$
(13)
  • For (S1, S4 = {(1/2, 3/2); (− 1/2,− 3/2)})

$$\begin{array}{@{}rcl@{}} F_{\frac{1}{2},\frac{3}{2}}&\,=\,&2\text{e}^{\frac{59}{4}\frac{{\Delta}_{2}}{z}+\frac{1331}{16}\frac{{\Delta}_{4}}{z}}\left( \text{e}^{\frac{5}{4}j+\frac{125}{16}C+\frac{3125}{64}F}ch\left( 2J\,+\,\frac{19}{2}C+\frac{421}{8}F\right)\,+\,\text{e}^{\frac{-5}{4}J-\frac{125}{16}C-\frac{3125}{64}F}ch\right.\\&&\left.\times\left( \frac{1}{2}J+\frac{49}{8}C+\frac{1441}{32}F\right)\right)\\ &&2\text{e}^{\frac{27}{4}\frac{{\Delta}_{2}}{z}+\frac{243}{16}\frac{{\Delta}_{4}}{z}}\left( \text{e}^{\frac{3}{4}J+\frac{27}{16}C+\frac{243}{64}F}ch\left( \frac{3}{2}J+\frac{27}{8}C + \frac{243}{32}F \right)\text{e}^{\frac{-3}{4}J-\frac{27}{16}C-\frac{243}{64}F}\right)\\ &&2\text{e}^{\frac{11}{4}\frac{{\Delta}_{2}}{z}+\frac{83}{16}\frac{{\Delta}_{4}}{z}}\left( \text{e}^{\frac{1}{4}J+\frac{1}{16}C+\frac{1}{64}F}ch\left( J+\frac{7}{4}C + \frac{61}{16}F \right)\text{e}^{\frac{-1}{4}J-\frac{1}{16}C-\frac{1}{64}F}ch\right.\\&&\left.\times\left( \frac{1}{2}J+\frac{13}{8}C+\frac{121}{32}F\right)\right) \end{array} $$
(14)
  • For (S1, S4 = {(1/2,− 3/2); (− 1/2, 3/2)})

$$ F_{\frac{1}{2},\frac{-3}{2}}=F_{\frac{-1}{2},\frac{3}{2}}=F_{\frac{1}{2},\frac{3}{2}}(J=-J,C=-C,F=-F) $$
(15)
  • For (S1, S4 = {(1/2, 1/2); (− 1/2,− 1/2)})

$$\begin{array}{@{}rcl@{}} F_{\frac{1}{2},\frac{1}{2}}&\,=\,&2\text{e}^{\frac{51}{4}\frac{{\Delta}_{2}}{z}+\frac{1251}{16}\frac{{\Delta}_{4}}{z}}\left( \text{e}^{\frac{5}{4}j+\frac{125}{16}C+\frac{3125}{64}F}ch\left( \frac{3}{2}J\,+\,\frac{63}{8}C\,+\,\frac{1563}{32}F\right)+\text{e}^{\frac{5}{4}J-\frac{125}{16}C-\frac{3125}{64}F}ch\right.\\&&\left.\times\left( J+\frac{31}{4}C+\frac{781}{16}F\right)\right)\\ &&2\text{e}^{\frac{19}{4}\frac{{\Delta}_{2}}{z}+\frac{163}{16}\frac{{\Delta}_{4}}{z}}\left( \text{e}^{\frac{3}{4}J+\frac{27}{16}C+\frac{243}{64}F}ch\left( J+\frac{7}{4}C + \frac{61}{16}F \right)\text{e}^{\frac{3}{4}J-\frac{27}{16}C-\frac{243}{64}F}ch\right.\\&&\left.\times\left( \frac{1}{2}J+\frac{13}{8}C+\frac{121}{32}F\right)\right)\\ &&2\text{e}^{\frac{3}{4}\frac{{\Delta}_{2}}{z}+\frac{13}{16}\frac{{\Delta}_{4}}{z}}\left( \text{e}^{\frac{1}{4}J+\frac{1}{16}C+\frac{1}{64}F}ch\left( \frac{1}{2}J+\frac{1}{8}C + \frac{1}{32}F \right)\text{e}^{\frac{1}{4}J-\frac{1}{16}C-\frac{1}{64}F}\right) \end{array} $$
(16)
  • For (S1, S4 = {(1/2,− 1/2); (− 1/2, 1/2)})

$$ F_{\frac{1}{2},\frac{-1}{2}}=F_{\frac{-1}{2},\frac{1}{2}}=F_{\frac{1}{2},\frac{1}{2}}(J=-J,C=-C,F=-F) $$
(17)

Appendix B

The Hamiltonian of this system is written as: \(H=-\bar {j}\sum \limits _{i\in (A)\atop J\in (B)} S_{i}S_{j}-\delta \sum \limits _{j\in (B)}S_{j}\)

It can also be written in the reduced form: \(-\beta H=J\sum \limits _{i\in (A)\atop J\in (B)} S_{i}S_{j}+{\Delta }_{2} \sum \limits _{j\in (B)} S^{2}_{j}\)

With: \(J=\beta .\bar {j}\) and Δ2 = β.δ

The total quadrupole moment Q is given by:

$$\begin{array}{@{}rcl@{}} Q&=&\left\langle\sum\limits_{j}S^{2}_{j}\right\rangle=\frac{N}{2}\left\langle S^{2}_{j}\right\rangle=\frac{N}{2} q\\ &=&Tr \ \rho \sum\limits_{j}S^{2}_{j}=\frac{Tr \sum\limits_{j}S^{2}_{j}.e^{-\beta H}}{Z}=\frac{Tr \sum\limits_{j}S^{2}_{j}.e^{\beta \delta\sum\limits_{j}S^{2}_{j}+\ldots}}{Z}\\ &=&\frac{\displaystyle\frac{\partial Z}{\partial(\beta\delta)}}{Z}=\left( \frac{\partial\log Z}{\partial(\beta\delta)}\right)_{T=cte}=\frac{1}{\beta}\left( \frac{\partial\log Z}{\partial\delta}\right)_{T=cte} \end{array} $$
(18)

Where q is quadrupole moment per spin, the Z is the partition function.

The free energy is defined by: \(f=-\frac {\log Z}{\beta }\), then: \(\left . Q=\frac {1}{\beta }\frac {\partial (-\beta f)}{\partial \delta }\right )_{T=cte}=\left .-\frac {\partial f}{\partial \delta }\right )_{T=cte}\)

Therefore, the negative first derivative of free energy with respect to crystal field gives the quadrupole moment.

Taking into account that: \(x=\frac {{\Delta }_{2}}{J}=\frac {\delta }{\bar {j}} and T=\frac {1}{J}=\frac {1}{\beta \bar {j}}=\frac {K_{B}T}{\bar {j}}\) (In our case: \(\bar {j}=K_{B}= 1)\).

We will have: \(Q=-\frac {\partial f}{\partial \delta }=-\frac {\partial x}{\partial \delta }.\frac {\partial f}{\partial x}=-\frac {1}{\bar {j}} . \frac {\partial f}{\partial x}\)

Finally: \(Q=-\frac {\partial f}{\partial x}\)

Hence the negative first derivative of free energy with respect to x (with x = Δ2/|J|) gives also the quadrupole moment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antari, A.E., Zahir, H., Hasnaoui, A. et al. Mixed Spin-1/2 and Spin-5/2 Model by Renormalization Group Theory: Recursion Equations and Thermodynamic Study. Int J Theor Phys 57, 2330–2342 (2018). https://doi.org/10.1007/s10773-018-3756-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3756-9

Keywords

Navigation