Skip to main content
Log in

Prey–predator realities: unveiling competition, cooperation, and shelter dynamics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In a more realistic scenario, we posit that certain predators engage in cooperative hunting of prey, all the while competing with other predators and occasionally causing fatal harm to one another. It is assumed that prey employ various strategies, including camouflage and concealment, to evade predators. The competition among the predators is considered the bifurcation parameter to analyze the equilibrium states and their characteristics, encompassing phenomena like saddle-node bifurcation, Hopf bifurcation, and the Hydra effect. Our primary focus is to examine how the dynamics of the system are influenced by prey seeking shelter and predator cooperation. Prey shelter effectively conceals a segment of its population from predators, reducing the critical point for outbreak occurrence and heightening vulnerability to outbreaks at lower prey population levels. The addition of cooperation reduces the peak predator population, necessitating increased competition and altering equilibrium thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No data associated in the manuscript.

References

  1. V. Volterra, Lecons sur la theorie Mathematique de la Lutte pour la vie Paris: Gauthier-Villars (1931)

  2. P. Leslie, Some further notes on the use of matrices in population mathematic. Biometrica 35, 213–245 (1948)

    Article  MathSciNet  Google Scholar 

  3. P. Leslie, J.C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika 47, 219–234 (1960)

    Article  MathSciNet  Google Scholar 

  4. M. Martelli, Discrete Dynamical Systems and Chaos [Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 62]. New York: Longman (1992)

  5. S.H. Strogatz, Non-linear Dynamics and Chaos, CRC Press, (2018)

  6. M.L. Rosenzweig, R.H. MacArthur, Graphical representation and stability conditions of predator–prey interactions. Am. Nat. 97, 209–223 (1963)

    Article  Google Scholar 

  7. C.S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Canada 45, 1–60 (1965)

    Google Scholar 

  8. A.D. Basykin, The Volterra system the Mikhaelis–Mente equation, Problems of Mathematical Genetics (Novosibirsk SO AN SSSR) 103, (in Russian) (1974)

  9. A.D. Bazykin, Structural and dynamic stability of model predator prey systems. IIASA Research Memorandum (1976)

  10. H.A. Lauwerier, Two-dimensional iterative maps. In Chaos, A.V. Holden (Ed), Princeton University Press, Princeton, NJ, 58–97 (1986)

  11. B. Krauskopf, A.I. Khibnik, A.D. Bazykin, Nonlinear Dynamics of interacting Populations World Scientific series on nonlinear science (Series A Monographs and treatises, World Scientific, Year, 1998)

  12. S.L. Lima, Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48(1), 25–34 (1998)

    Article  Google Scholar 

  13. S. Creel, D. Christianson, Relationships between direct predation and risk effects. Trends Ecol. Evol. 23(1), 194–201 (2008)

    Article  Google Scholar 

  14. S.L. Lima, Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biol. Rev. 84(1), 485–513 (2010)

    Google Scholar 

  15. W. Cresswell, Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011)

    Article  Google Scholar 

  16. L.Y. Zanette, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(1), 1398–1401 (2011)

    Article  ADS  Google Scholar 

  17. X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73(1), 1–26 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. X. Wang, X. Zou, Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(1), 1–355 (2017)

    ADS  MathSciNet  Google Scholar 

  19. C.B. Huffaker, C.E. Kennett, Experimental studies on predation: predation and cyclamen-mite populations on strawberries in California. Hilgardia 26, 191–222 (1956)

    Article  Google Scholar 

  20. M. Van de Vrie, Apple. In Spider Mites: Their Biology, Natural Enemies and Control, W. Helle and M. W. Sabelis (Eds), pp. 311-325. World Crop Pests Vol. 1B. Amsterdam: Elsevier (1985)

  21. E. Post, R.O. Peterson, N.C. Stenseth, B.E. McLaren, Ecosystem consequences of wolf behavioural response to climate. Nature 401, 905–907 (1999)

    Article  ADS  Google Scholar 

  22. B.L. Peckarsky, P.A. Abrams, D.I. Bolnick, L.M. Dill, J.H. Grabowski, B. Luttbeg, J.L. Orrock, S.D. Peacor, E.L. Preisser, O.J. Schmitz, G.C. Trussell, Revisiting the classics: considering nonconsumptive effects in textbook examples of predator–prey interactions. Ecology 89(9), 2416–2425 (2008)

    Article  Google Scholar 

  23. E. Gonzalez-Olivares, R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166, 135–146 (2003)

    Article  Google Scholar 

  24. P.A. Abrams, Measuring the impact of dynamic antipredator traits on predator–prey-resource interactions. Ecology 89, 1640–1649 (2008)

    Article  Google Scholar 

  25. S. Chakraborty, S. Bhattacharya, U. Feudel, J. Chattopadhyay, The role of avoidance by zooplankton for survival and dominance of toxic phytoplankton. Ecol. Compl. 11, 144–153 (2012)

    Article  Google Scholar 

  26. T.W. Anderson, Predator responses prey refuges and density-dependent mortality of a marine fish. Ecology 82, 245–257 (2001)

    Article  Google Scholar 

  27. A.A. Berryman, B.A. Hawkins, The refuge as an integrating concept in ecology and evolution. Oikos 115, 192–196 (2006)

    Article  ADS  Google Scholar 

  28. T.K. Kar, Stability analysis of a prey–predator model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10, 681–691 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. W. Ko, K. Ryu, Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231, 534–550 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. H. Zhang, Y. Cai, S. Fu, W. Wang Impact of the fear effect in a prey–predator model incorporating a prey refuge. Appl. Math. Comput. 356 328–337 (2019)

  31. S. Pal, F. Al Basir, S. Ray, Impact of cooperation and intra-specific competition of prey on the stability of prey–predator models with refuge. Math. Comput. Appl. 28, 88 (2023). https://doi.org/10.3390/mca28040088

  32. L. Chen, F. Chen, L. Chen, Qualitative analysis of predator–prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal. Real World Appl. 11, 246–252 (2010)

    Article  MathSciNet  Google Scholar 

  33. R. Cressman, J. Garay, A predator–prey refuge system: evolutionary stability in ecological systems. Theor. Popul. Biol. 76, 248–257 (2009)

    Article  Google Scholar 

  34. C. Packer, L. Ruttan, The evolution of cooperative hunting. Am. Nat. 132, 159–198 (1988)

    Article  Google Scholar 

  35. D.W. Macdonald, The ecology of carnivore social behaviour. Nature 301, 379–384 (1983)

    Article  ADS  Google Scholar 

  36. M.L. Luhrs, M. Dammhahn, An unusual case of cooperative hunting in a solitary carnivore. J. Ethol. 28, 379–383 (2010). https://doi.org/10.1007/s10164-009-0190-8

    Article  Google Scholar 

  37. S. Creel, N.M. Creel, Communal hunting and pack size in African wild dogs. Lycaon pictus. Anim. Behav. 50, 1325–1339 (1985)

    Article  Google Scholar 

  38. P.A. Schmidt, L.D. Mech, Wolf pack size and food acquisition. Am. Nat. 150, 513–517 (1997)

    Article  Google Scholar 

  39. C. Packer, D. Scheel, A.E. Pusey, Why lions form groups: food is not enough. Am. Nat. 136, 1–19 (1990)

    Article  Google Scholar 

  40. D. Scheel, C. Packer, Group hunting behaviour of lions: a search for cooperation. Anim. Behav. 41, 697–709 (1991)

    Article  Google Scholar 

  41. P.E. Stander, Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol. 29, 445–454 (1992)

    Article  Google Scholar 

  42. C. Boesch, Cooperative hunting in wild chimpanzees. Anim. Behav. 48, 653–667 (1994)

    Article  Google Scholar 

  43. G.W. Uetz, Foraging strategies of spiders. Trends Ecol. Evol. 7, 155–159 (1992)

    Article  Google Scholar 

  44. D.P. Hector, Cooperative hunting and its relationship to foraging success and prey size in an avian predator. Ethology 73, 247–257 (1986)

    Article  Google Scholar 

  45. M.W. Moffett, Foraging dynamics in the group-hunting myrmicine ant, pheidologeton diversus. J. Insect. Behav. 1, 309–331 (1988)

    Article  Google Scholar 

  46. J.C. Bednarz, Cooperative hunting Harris’ hawks (Parabuteo unicinctus). Science 239, 1525–1527 (1988)

    Article  ADS  Google Scholar 

  47. T. Pitcher, A. Magurran, I. Winfield, Fish in larger shoals find food faster. Behav. Ecol. Sociobiol. 10, 149–151 (1982)

    Article  Google Scholar 

  48. R.D. Estes, J. Goddard, Prey selection and hunting behavior of the African wild dog. J. Wildl. Manage. 31, 52–70 (1967). https://doi.org/10.2307/1249030

    Article  Google Scholar 

  49. J.A. Vucetich, R.O. Peterson, T.A. Waite, Raven scavenging favours group foraging in wolves. Anim. Behav. 67, 1117–1126 (2004)

    Article  Google Scholar 

  50. M.T. Alves, F.M. Hilker, Hunting cooperation and Allee effects in predators. J. Theoret. Biol. 419, 13–22 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  51. K. Ryu, and W. Ko, Asymptotic behavior of positive solutions to a predator–prey elliptic system with strong hunting cooperation in predators, Physica A (531), 121726 (2019)

  52. E.M. Takyi, C. Ohanian, M. Cathcart, N. Kumar, Dynamical analysis of a predator–prey system with prey vigilance and hunting cooperation in predators. Math Biosci. Eng. 21(2), 2768–2786 (2024). https://doi.org/10.3934/mbe.2024123

    Article  MathSciNet  Google Scholar 

  53. R.M. Simkins, M.C. Belk, No evidence of nonlinear effects of predator density, refuge availability, or body size of prey on prey mortality rates. Ecol. Evol. 16, 6119–6124 (2017). https://doi.org/10.1002/ece3.3183

    Article  Google Scholar 

  54. E. González-Olivares , J. Cabrera-Villegas, F. Córdova-Lepe, A. Rojas-Palma, Competition among Predators and Allee Effect on Prey, Their Influence on a Gause-Type Predation Model , Mathematical Problems in Engineering Volume 2019, Article ID 3967408, 19 pages https://doi.org/10.1155/2019/3967408

  55. L. Berec, Impacts of foraging facilitation among predators on predator–prey dynamics. Bull. Math. Biol. 72(1), 94–121 (2010)

    Article  MathSciNet  Google Scholar 

  56. G.T. Skalski, J.F. Gilliam, Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82(11), 3083–3092 (2001)

    Article  Google Scholar 

  57. J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44(1), 331–340 (1975)

    Article  Google Scholar 

  58. D.L. DeAngelis, R.A. Goldstein, R.V. O’Neill, A model for trophic interaction. Ecology 56, 881–892 (1975)

    Article  Google Scholar 

  59. P.H. Crowley, E.K. Martin, Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benthol. Soc. 8, 211–221 (1998)

    Article  Google Scholar 

  60. Y. Kuang, W.F. Fagan, I. Loladze, Biodiversity, habitat area, resource growth rate and interference competition. Bull. Math. Biol. 65, 497–518 (2003)

    Article  Google Scholar 

  61. H. Berestycki, A. Zilio, Predator–Prey models with competition: the emergence of territoriality. Am. Nat. 193(3), 436–446 (2019)

    Article  Google Scholar 

  62. L.A. Kalyakin, Asymptotics of Andronov–Hopf Dynamic Bifurcations, J. Math. Sci. 260(6) (2022)

  63. D.L. Lack, The Natural Regulation of Animal Numbers (Clarendon, Oxford, 1954), pp.212–217

    Google Scholar 

  64. R.M. May, Limit cycles in predator–prey communities. Science 177, 900–902 (1972). https://doi.org/10.1126/science.177.4052.900

    Article  ADS  Google Scholar 

  65. B. Blasius, L. Rudolf, G. Weithoff, U. Gaedke, G.F. Fussmann, Long-term cyclic persistence in an experimental predator–prey system. Nature 577(7789), 226–230 (2019). https://doi.org/10.1038/s41586-019-1857-0

    Article  ADS  Google Scholar 

  66. B. Tang, Y. Xiao, Bifurcation analysis of a predator-prey model with anti-predator behaviour. Chaos Solitons Fract. 70, 58–68 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  67. D. Sen, S. Ghorai, M. Banerjee, A., Morozov, Bifurcation analysis of the predator–prey model with the Allee effect in the predator. J. Math. Biol. 84:7 (2022) https://doi.org/10.1007/s00285-021-01707-x

  68. N. Wang, M. Zhao, H. Yu, C. Dai, B. Wang, and P. Wang, Bifurcation Behavior Analysis in a Predator-Prey Model Hindawi Publishing Corporation Discrete Dynamics in Nature and Society, Volume 2016, Article ID 3565316, 11 pages https://doi.org/10.1155/2016/3565316

  69. H. Chen, C. Zhang, Bifurcations and hydra effects in a reaction–diffusion pradator–prey model with Holling II functional response. J.Appl. Anal. Comput. 13(1), 424–444 (2023)

    MathSciNet  Google Scholar 

  70. A. Peter, AbramsWhen does greater mortality increase population size? The long history and diverse mechanisms underlying the hydra effect. Ecol. Lett. 12, 462–474 (2009)

    Article  Google Scholar 

  71. A. Schroder, L. Persson, A.M.D. Roos, Culling experiments demonstrate size-class specific biomass increases with mortality. Proc. Natl. Acad. Sci. USA 106(8), 2671–2676 (2009)

    Article  ADS  Google Scholar 

  72. A. Schroder, A. van Leeuwen, T.C. Cameron, When less is more: positive population-level effects of mortality. Trends Ecol. Evol. 29(11), 614–624 (2014)

    Article  Google Scholar 

  73. M. Lu, C. Xiang, J. Huang, H. Wang, Bifurcations in the diffusive Bazykin model. J. Differ. Equ. 323, 280–311 (2022). https://doi.org/10.1016/j.jde.2022.03.039

    Article  ADS  MathSciNet  Google Scholar 

  74. M.H. Cortez, P.A. Abrams, Hydra effects in stable communities and their implications for system dynamics. Ecology 97(5), 1135–1145 (2016)

    Article  Google Scholar 

  75. M. Sieber, F.M. Hilker, The hydra effect in predator–prey models. J. Math. Biol. 64(1–2), 341–360 (2012). https://doi.org/10.1007/s00285-011-0416-6

    Article  MathSciNet  Google Scholar 

  76. P.A. Abrams, What are hydra effects? A response to Schroder et al., Trends Ecol. Evol. 30(4), 179–180 (2015)

  77. W.E. Ricker, Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623 (1954)

    Article  Google Scholar 

  78. R.A. Pratama, O. Dadi, A.M.A. Siddik, Kasbawati, Hydra effects predator–prey Bazykin’s model with stagestructure and intraspecific for predator. J. Matematika 5(3), 279–288 (2022)

    Google Scholar 

  79. L.B. Slobodkin, Prudent predation does not require group selection. Am. Nat. 108, 665–678 (1974)

    Article  Google Scholar 

  80. R.D. Holt, Food webs in space: on the interplay of dynamic instability and spatial processes. Ecol. Res. 17, 261–273 (2002)

    Article  Google Scholar 

  81. M. Danca, S. Codreanu, B. Bako\(^{\prime }\), Detailed Analysis of a Nonlinear prey–predator Model. J. Biol. Phys. 23, 11–20 (1997)

  82. Y. Xiao, L. Chen, A ratio-dependent predator–prey model with disease in the prey. Appl. Math. Comput. 131, 397–414 (2002)

    MathSciNet  Google Scholar 

  83. F. Wu, Y. Jiao, Stability and Hopf bifurcation of a predator–prey model. Ecology, 129, (2019) https://doi.org/10.1186/s13661-019-1242-9

  84. K.D. Prasad, B.S.R.V. Prasad, Qualitative analysis of additional food provided predator-prey system with anti-predator behaviour in prey. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-04883-0

    Article  Google Scholar 

  85. M. Shivam, T. Kumar, S. Singh, Chauhan, positive effect of predator’s mortality in predator–prey system via turing patterns. Braz. J. Phys. 52, 159 (2022)

    Article  ADS  Google Scholar 

  86. W. Zhang, D. Jin, R. Yang, Hopf bifurcation in a predator–prey model with memory effect in predator and anti-predator behaviour in prey. Mathematics 11, 556 (2023)

    Article  Google Scholar 

  87. S. Biswas, L.T. Bhutiab and T.P. Kar Transient and asymptotic dynamics of Bazykin’s prey–predator model on managing reactivity, resilience, and maximum sustainable yield, Eur. Phys. J. Plus, 138, 256 (2023) https://doi.org/10.1140/epjp/s13360-023-03824-6

  88. C. Cosner, D.L. DeAngelis, J.S. Ault, D.B. Olson, Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)

    Article  Google Scholar 

  89. J. Duarte, C. Januário, N. Martins, J. Sardanyés, Chaos and crises in a model for cooperative hunting: a symbolic dynamics approach. Chaos 19, 043102 (2009)

    Article  ADS  Google Scholar 

  90. S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Fear effect in prey and hunting cooperation among predators in a Leslie–Gower model. Math. Biosci. Eng. 16, 5146–5179 (2019)

    Article  MathSciNet  Google Scholar 

  91. Y. Du, B. Niu, J. Wei, A predator–prey model with cooperative hunting in the predator and group defense in the prey. Discrete Cont. Dyn.-B. 27, 5845–5881 (2022)

    Article  MathSciNet  Google Scholar 

  92. K.A. Abbakar, Y. Yang, A. Mohamed, S. Xia, M.M. Abkar, O.B.E. Hassan, Stability analysis and Hopf bifurcation for ODE system of predator–prey model with mutual interference. Appl. Math. 12, 793–802 (2021)

    Article  Google Scholar 

  93. P.D. Adhikary, S. Mukherjee, B. Ghosh, Bifurcations and hydra effects in Bazykin’s predator–prey model. Theor. Popul. Biol. 140, 44–53 (2021)

    Article  Google Scholar 

  94. T. Ma, Z. Meng, A.K. Alzahrani, Turing instability and Hopf bifurcation induced by prey refuge in a diffusive predator–prey system with stage structure and anti-predation. Eur. Phys. J. Plus (138), 624 (2023)

  95. A.K. Lasunskii, Equilibria of a nonautonomous Lotka–Volterra model with shelter for the prey. Differ. Equ. 45, 460–463 (2007)

    Article  MathSciNet  Google Scholar 

  96. M. Rayungsari, A. Sryanto, W.M. Kusumawinahyu, Dynamical analysis of a predator–prey model incorporating predator cannibalism and refuge. Axioms 11, 116 (2022)

    Article  Google Scholar 

  97. T.V. Karamysheva, N.A. Magnitskii, Transition to diffusion chaos in a model of a ‘Predator–Prey’ system with a lower threshold for the prey population. Differ. Equ. 56, 671–675 (2020)

    Article  MathSciNet  Google Scholar 

  98. D. Bai, J. Tang, Global Dynamics of a Predator-Prey System with Cooperative Hunting. Appl. Sci., 13, 8178 (2023). https://doi.org/10.3390/app13148178

  99. M.S. Surendar, M. Sambath, K. Balachandran and Y.-K. Ma, Qualitative analysis of a prey–predator model with prey refuge and intraspecific competition among predators. Bound. Value Problems 81, 2023 (2023) https://doi.org/10.1186/s13661-023-01771-w

  100. J. Tong, \(b^2-4ac\) and \(b^2-3ac\). Math Gazzette 88, 511–513 (2004)

    Article  Google Scholar 

  101. M. Bestehorn, Computational Physics, The MathWorks, Inc. (2023) http://dnb.dnb.de

  102. Irving R. Epstein, John A. Pojman, An Introductions to Nonlinear Chemical Dynamics, Oscillations, Waves, Patterns, and Chaos (Oxford University Press, New York, 1998)

    Book  Google Scholar 

  103. P.A. Abrams, H. Matsuda, The effect of adaptive change in prey on the dynamics of an exploited predator population. Can. J. Fish. Aquat. Sci. 62, 758–766 (2005)

    Article  Google Scholar 

  104. P.A. Abrams, When does greater mortality increase population size? The long history and diverse mechanisms underlying the hydra effect. Ecol. Lett. 12, 462–474 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This study is performed under the Science Centre Project No. SGTBKC/2682, titled Pattern in Biological Systems, of the SGTB Khalsa College, University of Delhi, Delhi 110007, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savinder Kaur.

Ethics declarations

Conflict of interest

There are no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Chauhan, H., Vardhan, Y. et al. Prey–predator realities: unveiling competition, cooperation, and shelter dynamics. Eur. Phys. J. Plus 139, 392 (2024). https://doi.org/10.1140/epjp/s13360-024-05171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05171-6

Navigation