Skip to main content
Log in

The hydra effect in predator–prey models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The seemingly paradoxical increase of a species population size in response to an increase in its mortality rate has been observed in several continuous-time and discrete-time models. This phenomenon has been termed the “hydra effect”. In light of the fact that there is almost no empirical evidence yet for hydra effects in natural and laboratory populations, we address the question whether the examples that have been put forward are exceptions, or whether hydra effects are in fact a common feature of a wide range of models. We first propose a rigorous definition of the hydra effect in population models. Our results show that hydra effects typically occur in the well-known Gause-type models whenever the system dynamics are cyclic. We discuss the apparent discrepancy between the lack of hydra effects in natural populations and their occurrence in this standard class of predator–prey models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams PA (2009) When does greater mortality increase population size? The long history and diverse mechanisms underlying the hydra effect. Ecol Lett 12: 462–474

    Article  Google Scholar 

  • Abrams PA, Brassil CE, Holt RD (2003) Dynamics and responses to mortality rates of competing predators undergoing predator–prey cycles. Theor Popul Biol 64: 163–176

    Article  MATH  Google Scholar 

  • Abrams PA, Ginzburg LR (2000) The nature of predation: prey dependent, ratio dependent or neither?. Trends Ecol Evol 15(8): 337–341

    Article  Google Scholar 

  • Abrams PA, Matsuda H (2005) The effect of adaptive change in the prey on the dynamics of an exploited predator population. Can J Fish Aquat Sci 62: 758–766

    Article  Google Scholar 

  • Allee WC (1931) Animal aggregations: a study in general sociology. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Armstrong RA, McGehee R (1980) Competitive exclusion. Am Nat 115(2): 151–170

    Article  MathSciNet  Google Scholar 

  • Bauer F (1979) Boundedness of solutions of predator–prey systems. Theor Popul Biol 15(2): 268–273

    Article  Google Scholar 

  • Bazykin AD (1998) Nonlinear dynamics of interacting populations. World Scientific, Singapore

    Book  Google Scholar 

  • Beddington JR (1975) Mutual interference between parasites or predators and its effect on searching efficiency. J Anim Ecol 44: 331–340

    Article  Google Scholar 

  • Conway ED, Smoller JA (1986) Global analysis of a system of predator–prey equations. SIAM J Appl Math 46(4): 630–642

    Article  MATH  MathSciNet  Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, New York

    Book  Google Scholar 

  • Dattani J, Blake JCH, Hilker FM (2011) Target-oriented chaos control (in review)

  • De Angelis DL, Goldstein RA, O’Neill RV (1975) A model for trophic interaction. Ecology 56: 881–892

    Article  Google Scholar 

  • de Feo O, Rinaldi S (1997) Yield and dynamics of tritrophic food chains. Am Nat 150: 328–345

    Article  Google Scholar 

  • Dercole F, Ferrière R, Gragnani A, Rinaldi S (2006) Coevolution of slow-fast populations: evolutionary sliding, evolutionary pseudo-equilibria and complex Red Queen dynamics. Proc R Soc B 273: 983–990

    Article  Google Scholar 

  • Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57: 617–656

    Article  MathSciNet  Google Scholar 

  • Gaunersdorfer A (1992) Time averages for heteroclinic attractors. SIAM J Appl Math 52(5): 1476–1489

    Article  MATH  MathSciNet  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore

    Book  Google Scholar 

  • Gragnani A, de Feo O, Rinaldi S (1998) Food chains in the chemostat: relationships between mean yield and complex dynamics. Bull Math Biol 60: 703–719

    Article  MATH  Google Scholar 

  • Hilker FM, Westerhoff FH (2006) Paradox of simple limiter control. Phys Rev E 73: 052901

    Article  Google Scholar 

  • Kuznetsov YA (1995) Elements of applied bifurcation theory. Springer, New York

    MATH  Google Scholar 

  • Liou LP, Cheng KS (1988) On the uniqueness of a limit cycle for a predator–prey system. SIAM J Math Anal 88: 67–84

    MathSciNet  Google Scholar 

  • Liu Y (2005) Geometric criteria for the nonexistence of cycles in Gause-type predator–prey systems. Proc Am Math Soc 133: 3619–3626

    Article  MATH  Google Scholar 

  • Liz E (2010) How to control chaotic behaviour and population size with proportional feedback. Phys Lett A 374: 725–728

    Article  MathSciNet  Google Scholar 

  • Matsuda H, Abrams PA (2004) Effects of adaptive change and predator–prey cycles on sustainable yield. Can J Fish Aquat Sci 61: 175–184

    Article  Google Scholar 

  • May RM (1976) Theoretical ecology: principles and applications. Blackwell, Oxford

    Google Scholar 

  • May RM, Leonard W (1975) Nonlinear aspects of competition between three species. SIAM J Appl Math 29: 243–252

    Article  MATH  MathSciNet  Google Scholar 

  • McGehee R, Armstrong RA (1977) Some mathematical problems concerning the ecological principle of competitive exclusion. J Differ Equ 23: 30–52

    Article  MATH  MathSciNet  Google Scholar 

  • Ricker WE (1954) and recruitment. J Fish Res Board Can 11: 559–623

    Article  Google Scholar 

  • Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator–prey interactions. Am Nat 97: 209–223

    Article  Google Scholar 

  • Schreiber SJ (2003) Allee effects, extinctions, and chaotic transients in simple population models. Theor Popul Biol 64: 201–209

    Article  MATH  Google Scholar 

  • Schreiber SJ, Rudolf VHW (2008) Crossing habitat boundaries: coupling dynamics of ecosystems through complex life cycles. Ecol Lett 11: 576–587

    Article  Google Scholar 

  • Seno H (2008) A paradox in discrete single-species population dynamics with harvesting/thinning. Math Biosci 214: 63–69

    Article  MATH  MathSciNet  Google Scholar 

  • Sieber M, Hilker FM (2011) Prey, predators, parasites: intraguild predation or simpler community modules in disguise?. J Anim Ecol 80: 414–421

    Article  Google Scholar 

  • Sinha S, Parthasarathy S (1996) Unusual dynamics of extinction in a simple ecological model. Proc Natl Acad Sci 93: 1504–1508

    Article  MATH  Google Scholar 

  • Terry AJ, Gourley SA (2010) Perverse consequences of infrequently culling a pest. Bull Math Biol 72: 1666–1695

    Article  MATH  MathSciNet  Google Scholar 

  • Turchin P (2003) Complex population dynamics: a theoretical/empirical synthesis. Princeton University Press, Princeton

    MATH  Google Scholar 

  • van Voorn GAK, Hemerik L, Boer MP, Kooi BW (2007) Heteroclinic orbits indicate overexploitation in predator–prey systems with a strong Allee effect. Math Biosci 209: 451–469

    Article  MATH  MathSciNet  Google Scholar 

  • Volterra V (1931) Leçons sur la théorie mathématique de la lutte pour la vie. Gauthier-Villars, Paris

    Google Scholar 

  • Wang J, Shi J, Wei J (2011) Predator–prey system with strong Allee effect in prey. J Math Biol 62: 291–331

    Article  MathSciNet  Google Scholar 

  • Yodzis P (1989) Introduction to theoretical ecology. Harper & Row, New York

    MATH  Google Scholar 

  • Zicarelli J (1975) Mathematical analysis of a population model with several predators on a single prey. Ph.D. Thesis. University of Minnesota

  • Zipkin EF, Kraft CE, Cooch EG, Sullivan PJ (2009) When can efforts to control nuisance and invasive species backfire?. Ecol Appl 19: 1585–1595

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sieber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieber, M., Hilker, F.M. The hydra effect in predator–prey models. J. Math. Biol. 64, 341–360 (2012). https://doi.org/10.1007/s00285-011-0416-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0416-6

Keywords

Mathematics Subject Classification (2000)

Navigation