Skip to main content
Log in

Propagation of the autofocusing Lommel–Gaussian vortex beam with I-Bessel beam in turbulent atmosphere

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

By the Fourier transformation upon an autofocusing Lommel–Gaussian vortex beam (LGVB) with J-Bessel beam, a novel autofocusing LGVB with I-Bessel beam is generated, and then the generated beam propagation in turbulence-free channel and turbulent atmosphere is investigated. Results demonstrate that under similar beam intensity profile parameters, a LGVB with J-Bessel beam has stronger anti-diffraction effect than a LGVB with I-Bessel beam in short-distance transmission, while a LGVB with I-Bessel beam has better autofocusing properties in long-distance transmission. Also, with the increase in topological charge, the intensity profile of the LGVB with I-Bessel beam remains almost unchanged within a certain distance, while it enlarges and the maximum intensity reduces beyond the certain distance. Additionally, when the ring radius approaches to a Gaussian beam waist, a LGVB with I-Bessel beam would degenerate into a LGVB with J-Bessel beam. Besides, impact of refractive index structure parameter and wavelength on the received probability of the LGVB with I-Bessel beam are also studied, and it is showed that the received probability decreases with the increase in the refractive index structure parameter or wavelength. This work could extend potential applications of LGVB with I-Bessel beam in free-space optical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. A. Chong, C.H. Wan, J. Chen, Q.W. Zhan, Nat. Photonics 14, 350 (2020)

    Article  ADS  Google Scholar 

  2. G. Gariepy, J. Leach, K.T. Kim, T.J. Hammond, E. Frumker, R.W. Boyd, P.B. Corkum, Phys. Rev. Lett. 113, 5 (2014)

    Article  Google Scholar 

  3. L. Lu, Z.Q. Wang, Opt. Commun. 471, 5 (2020)

    Article  Google Scholar 

  4. G.Q. Zhou, Y.J. Cai, X.X. Chu, Opt. Express 20, 14 (2012)

    Google Scholar 

  5. A. Giusti, F. Mainardi, Eur. Phys. J. Plus 131, 7 (2016)

    Article  Google Scholar 

  6. C.F. Gong, Z.Z. Pan, M.I. Dedo, J.H. Sun, L.L. Wang, Z.Y. Guo, Results Phys. 30, 7 (2021)

    Article  Google Scholar 

  7. T. Yu, H. Xia, W.K. Xie, G.Z. Xiao, H.J. Li, Results Phys. 16, 7 (2020)

    Article  Google Scholar 

  8. Q. Zhang, Z.R. Liu, X. Wang, Eur. Phys. J. Plus 137, 11 (2022)

    Article  ADS  Google Scholar 

  9. H. Li, H.G. Liu, X.F. Chen, Opt. Express 26, 21204 (2018)

    Article  ADS  Google Scholar 

  10. Y. Chen, Z.X. Fang, Y.X. Ren, L. Gong, R.D. Lu, Appl. Opt. 54, 8030 (2015)

    Article  ADS  Google Scholar 

  11. F.Q. Zhu, S.J. Huang, W. Shao, J. Zhang, M.S. Chen, W.B. Zhang, J.Z. Zeng, Opt. Commun. 396, 50 (2017)

    Article  ADS  Google Scholar 

  12. S. Qiu, Y. Ren, T. Liu, L.L. Chen, C. Wang, Z.M. Li, Q.L. Shao, Opt. Lasers Eng. 124, 6 (2020)

    Article  Google Scholar 

  13. H.L. Zhou, J.J. Dong, L. Shi, D.X. Huang, X.L. Zhang, Opt. Lett. 39, 731 (2014)

    Article  ADS  Google Scholar 

  14. V.P. Aksenov, V.V. Kolosov, G.A. Filimonov, C.E. Pogutsa, J. Opt. 18, 6 (2016)

    Article  Google Scholar 

  15. Y.X. Zhang, J. Cang, Chin. Phys. Lett. 26, 4 (2009)

    Google Scholar 

  16. Y.X. Zhang, Y.G. Wang, J.C. Xu, J.Y. Wang, J.J. Jia, Opt. Commun. 284, 1132 (2011)

    Article  ADS  Google Scholar 

  17. S.H. Li, J. Wang, Sci. Rep. 7, 8 (2017)

    Article  ADS  Google Scholar 

  18. J. Ou, Y.S. Jiang, J.H. Zhang, H. Tang, Y.T. He, S.H. Wang, J. Liao, Opt. Commun. 318, 95 (2014)

    Article  ADS  Google Scholar 

  19. A.A. Kovalev, V.V. Kotlyar, Opt. Commun. 338, 117 (2015)

    Article  ADS  Google Scholar 

  20. Q. Liang, Y. Zhu, Y. Zhang, Results Phys. 14, 102511 (2019)

    Article  Google Scholar 

  21. L. Yu, Y. Zhang, Opt. Express 25, 22565 (2017)

    Article  ADS  Google Scholar 

  22. H.X. Ma, X.Z. Li, Y.P. Tai, H.H. Li, J.G. Wang, M.M. Tang, J. Tang, Y.S. Wang, Z.G. Nie, Ann. Phys. Berl. 529, 9 (2017)

    Google Scholar 

  23. G. Pesce, P.H. Jones, O.M. Maragò, G. Volpe, Eur. Phys. J. Plus 135, 38 (2020)

    Article  Google Scholar 

  24. J. Wang, Photonics Res. 4, B14 (2016)

    Article  Google Scholar 

  25. Y. Yan, Y. Yue, H. Huang, J.Y. Yang, M.R. Chitgarha, N. Ahmed, M. Tur, S.J. Dolinar, A.E. Willner, Opt. Lett. 37, 3645 (2012)

    Article  ADS  Google Scholar 

  26. C.Y. Yang, Y. Lan, X.Y. Jiang, H. Long, J. Hou, S.P. Chen, Opt. Commun. 472, 6 (2020)

    Google Scholar 

  27. Y. Li, Y.X. Zhang, Y. Zhu, IEEE Photonics J. 12, 15 (2020)

    Google Scholar 

  28. P. Vaity, L. Rusch, Opt. Lett. 40, 597 (2015)

    Article  ADS  Google Scholar 

  29. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, 2014)

    Google Scholar 

  30. J.W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005)

    Google Scholar 

  31. G. Molina-Terriza, J.P. Torres, L. Torner, Phys. Rev. Lett. 88, 013601 (2002)

    Article  ADS  Google Scholar 

  32. X. Yan, L. Guo, M. Cheng, J. Li, Q. Huang, R. Sun, Opt. Express 25, 15286 (2017)

    Article  ADS  Google Scholar 

  33. Y.S. Jiang, S.H. Wang, J. Ou, H. Tang, Acta Phys. Sin. 62, 5 (2013)

    Article  Google Scholar 

  34. M.J. Cheng, L.X. Guo, J.T. Li, Q.Q. Huang, J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 33, 1442 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12364042) and the Natural Science Foundation of Jiangxi Province (20224ACB201009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Liu.

Appendix

Appendix

On Substitution from Eqs. (6.2), (11) into Eq. (10) and utilizing Eq. (12), the integral formula for the average probability distribution at the receiving plane becomes:

$$\begin{aligned} \left\langle {\left| {R_{l,m} \left( {\rho ,z} \right)} \right|^{2} } \right\rangle & = \frac{1}{2\pi }\int_{0}^{2\pi } {\int_{0}^{2\pi } {E_{I} \left( {\rho ,\theta ,z} \right)} E_{I}^{ * } \left( {\rho ^{\prime},\theta ^{\prime},z} \right) \times \left\langle {\exp \left[ {\psi \left( {\rho ,\theta ,z} \right) + \psi^{ * } \left( {\rho ^{\prime},\theta ^{\prime},z} \right)} \right]} \right\rangle {\text{d}}\theta {\text{d}}\theta ^{\prime}} \\ & =\frac{1}{2\pi }\sum\limits_{q = 0}^{\infty } {\left( {ic} \right)^{2q} } \sum\limits_{q^{\prime} = 0}^{\infty } {\left( {ic} \right)^{2q^{\prime}} } \int_{0}^{2\pi } {\int_{0}^{2\pi } {\frac{{k^{2} }}{{4n_{1} n_{1}^{*} z^{2} }}\exp \left( {\frac{{\alpha_{1}^{2} - \beta_{1}^{2} }}{{4n_{1} }}} \right)J_{l} \left( {\frac{{\alpha_{1} \beta_{1} }}{{2n_{1} }}} \right)} } \\ & \quad \times \frac{k}{{2n_{1} z}}\exp \left[ {i2\left( {q - q^{\prime}} \right)\theta } \right]\exp \left( {\frac{{\alpha_{1}^{2} - \beta_{1}^{2} }}{{4n_{1}^{*} }}} \right)J_{l} \left( {\frac{{\alpha_{1} \beta_{1} }}{{2n_{1}^{*} }}} \right) \\ & \quad \times \exp \left[ { - i\left( {m - m_{0} - 2q^{\prime}} \right)\left( {\theta - \theta ^{\prime}} \right)} \right]\exp \left( { - \frac{{2\rho^{2} - 2\rho^{2} \cos \left( {\theta - \theta ^{\prime}} \right)}}{{\sigma_{0}^{2} }}} \right){\text{d}}\theta {\text{d}}\theta ^{\prime}, \\ \end{aligned}$$
(15)

where l = m0 + 2q is topological charge. Utilizing the following formula:

$$\begin{aligned} & \int_{0}^{2\pi } {\exp \left[ { - ix\theta + y\cos \left( {\theta - \theta ^{\prime}} \right)} \right]{\text{d}}\theta = 2\pi \exp \left( { - ix\theta ^{\prime}} \right)I_{x} \left( y \right)} , \\ & \int_{0}^{2\pi } {\exp \left( {is\phi } \right){\text{d}}\phi = \left\{ {\begin{array}{*{20}c} {2\pi } & {{\text{if}}\;m = 0,} \\ { 0} & {{\text{if}}\;m \ne 0,} \\ \end{array} } \right.} \\ \end{aligned}$$
(16)

a more convenient analytical expression can be obtained

$$\left\langle {\left| {R_{l,m} \left( {\rho ,z} \right)} \right|^{2} } \right\rangle = \sum\limits_{q = 0}^{\infty } {c^{4q} \frac{{k^{2} \pi }}{{2n_{1} n_{1}^{ * } z^{2} }}} \exp \left( {\frac{{\alpha_{1}^{2} - \beta_{1}^{2} }}{{4n_{1} }} + \frac{{\alpha_{1}^{2} - \beta_{1}^{2} }}{{4n_{1}^{ * } }} - \frac{{2\rho^{2} }}{{\sigma_{0}^{2} }}} \right)J_{l} \left( {\frac{{\alpha_{1} \beta_{1} }}{{2n_{1} }}} \right)J_{l} \left( {\frac{{\alpha_{1} \beta_{1} }}{{2n_{1}^{ * } }}} \right)I_{m - l} \left( {\frac{{2r^{2} }}{{\sigma_{0}^{2} }}} \right).$$
(17)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Liu, Z. Propagation of the autofocusing Lommel–Gaussian vortex beam with I-Bessel beam in turbulent atmosphere. Eur. Phys. J. Plus 139, 294 (2024). https://doi.org/10.1140/epjp/s13360-024-05094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05094-2

Navigation