Skip to main content
Log in

Investigation of Hall current and thermal diffusion effects on unsteady MHD mixed convective Jeffrey fluid flow over an inclined permeable surface with chemical reaction

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Jeffrey fluids, a subset of non-Newtonian fluids, have received substantial research attention owing to their versatile utility in industries, such as polymer processing, cosmetics, and glass manufacturing. This paper endeavors to introduce a pioneering outlook on the behavior of Jeffrey fluids by researching their intricate responses to an array of influencing factors, including slip conditions, thermal effects, magnetic fields, chemical influences, and pivotal roles in the enhancement of drug delivery systems. Jeffrey fluids hold particular significance in modeling physiological fluids found in biological systems, representing blood circulation with precision in terms of relaxation time and stress retardation. Interestingly, under specific conditions, when subjected to wall shear stress exceeding the yield strength, Jeffrey fluids transition to exhibit Newtonian fluid characteristics. Hence, we embark on a comprehensive exploration of the applicability of the Jeffrey fluid model across diverse industrial domains and its contribution to the realm of flow control. Our research focuses on the study of mixed convective Jeffrey fluid flow across an inclined vertical plate, considering the combined impacts of the Soret and Hall currents, along with slip conditions involving velocity, temperature, and concentration disparities. This intricate problem is analytically resolved through the careful use of the perturbation technique. Furthermore, the inclined angle parameter enhances the velocity profile, while the velocity slip parameter exhibits the opposite effect. Additionally, the thermal and concentration slip parameters attenuate the temperature and concentration profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

We do not analyze or generate any datasets because our work proceeds within a theoretical and mathematical approach.

Abbreviations

\(g\) :

Acceleration due to gravity (m/s2)

\(\alpha\) :

Angle of inclined parameter (°)

\(\gamma\) :

Aligned magnetic field

\(T^{*}\) :

Fluid temperature (K)

\(T_{\infty }^{*}\) :

Ambient temperature (K)

\(C^{*}\) :

Concentration of the fluid (mol m−3)

\(C_{\infty }^{*}\) :

Ambient concentration (mol m−3)

\(\sigma\) :

Electrical conductivity (S m1)

\(B_{0}\) :

Applied magnetic field

\(\rho\) :

Density of the fluid (Kg/m3)

\(v\) :

Kinematic viscosity (m2 s1)

\(m\) :

Hall current parameter

\(k\) :

Thermal conductivity (W/mK)

\(C_{{\text{p}}}\) :

Specific heat at constant pressure (J/Kg K)

\(\lambda\) :

Jeffrey fluid parameter

\(K^{*}\) :

Permeability of the porous medium (m2)

\(K_{{\text{p}}}\) :

Permeability of the porous parameter (m2)

\(D_{{\text{m}}}\) :

Molecular diffusivity (m2 s1)

\(R\) :

Radiation parameter

\(\Pr\) :

Prandtl number

\(M\) :

Magnetic field parameter

\(Q\) :

Heat generation/absorption parameter (J/K)

\({\text{Kr}}\) :

Chemical reaction parameter (S1)

\({\text{Sr}}\) :

Soret number

\({\text{Gr}}\) :

Thermal Grashof number

\({\text{Gm}}\) :

Mass Grashof number

\(h_{1}\) :

Velocity slip parameter

\(h_{2}\) :

Thermal slip parameter

\(h_{3}\) :

Concentration slip parameter

References

  1. H. Alfvén, Existence of electromagnetic-hydrodynamic waves. Nature 150(3805), 405–406 (1942)

    Article  ADS  Google Scholar 

  2. G. Manjunatha, C. Rajashekhar, H. Vaidya, K.V. Prasad, O.D. Makinde, J.U. Viharika, Impact of variable transport properties and slip effects on MHD Jeffrey fluid flow through channel. Arab. J. Sci. Eng. 45, 417–428 (2020)

    Article  Google Scholar 

  3. B. HariBabu, P. Srinivasa Rao, S.V.K. Varma, Hall and ion-slip effects on MHD free convection flow of rotating Jeffrey fluid over an infinite vertical porous surface. Heat Transf. 50(2), 1776–1798 (2021)

    Article  Google Scholar 

  4. E.H. Hall, On a new action of the magnet on electric currents. Am. J. Math. 2(3), 287–292 (1879)

    Article  MathSciNet  Google Scholar 

  5. M. Fiza, A. Alsubie, H. Ullah, N.N. Hamadneh, S. Islam, I. Khan, Three-dimensional rotating flow of MHD Jeffrey fluid flow between two parallel plates with impact of hall current. Math. Probl. Eng. 19, 1–9 (2021)

    Article  MathSciNet  Google Scholar 

  6. H. Ullah, A. Alsubie, M. Fiza, N.N. Hamadneh, S. Islam, I. Khan, Impact of Hall current and nonlinear thermal radiation on Jeffrey nanofluid flow in rotating frame. Math. Probl. Eng. 2021, 1–21 (2021)

    Google Scholar 

  7. M.V. Krishna, Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature. Int. Commun. Heat Mass Transfer 126, 105399 (2021)

    Article  Google Scholar 

  8. R.S. Raju, B.M. Reddy, G.J. Reddy, Finite element solutions of free convective Casson fluid flow past a vertically inclined plate submitted in magnetic field in presence of heat and mass transfer. Int. J. Comput. Methods Eng. Sci. Mech. 18(4–5), 250–265 (2017)

    Article  MathSciNet  Google Scholar 

  9. K.V. Raju, A. Parandhama, M.C. Raju, K.R. Babu, Unsteady MHD mixed convection flow of Jeffrey fluid past a radiating inclined permeable moving plate in presence of thermophoresis heat generation and chemical reaction. J. Ultra Sci. Phys. Sci. 30(1), 51–65 (2018)

    Google Scholar 

  10. L. Manjula, R. Muthucumaraswamy, Heat and mass transfer effect on an infinite vertical plate in the presence of hall current and thermal radiation with variable temperature. Int. J. Appl. Mech. Eng. 26(3), 131–140 (2021)

    Article  CAS  Google Scholar 

  11. N. Kanimozhi, R. Vijayaragavan, K. Shanmugam, Impacts of thermal radiation, viscous dissipation, ohmic heating, and diffusion-thermo effects on unsteady MHD free convective rotating flow of second-grade fluid with Hall and ion-slip currents. Heat Transf. 51(8), 7435–7461 (2022)

    Article  Google Scholar 

  12. M. Qasim, Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink. Alex. Eng. J. 52, 571–575 (2013)

    Article  Google Scholar 

  13. T. Hayat, S.A. Shehzad, M. Qasim, S. Obaidat, Radiative flow of a Jeffrey fluid in a porous medium with power law heat flux and heat source. Nucl. Eng. Des. 243, 15–19 (2012)

    Article  CAS  Google Scholar 

  14. M. Kothandapani, S. Srinivas, Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel. Int. J. Nonlinear Mech. 43(9), 15–24 (2008)

    Article  Google Scholar 

  15. S. Nadeem, N.S. Akbar, Peristaltic flow of a Jeffrey fluid with variable viscosity in an asymmetric channel. Z. für Naturforschung A 64(11), 713–722 (2009)

    Article  ADS  CAS  Google Scholar 

  16. R. Ellahi, M.M. Bhatti, I. Pop, Effects of hall and ion slip on MHD Peristaltic flow of Jeffrey fluid in a nonuniform rectangular duct. Int. J. Numer. Meth. Heat Fluid Flow 26(6), 1802–1820 (2016)

    Article  Google Scholar 

  17. K. Ramesh, D. Tripathi, O.A. Beg, A. Kadir, Slip and hall current effects on Jeffrey fluid suspension flow in a peristaltic hydromagnetic blood micropump. Iran. J. Sci. Technol. Trans. Mech. Eng. 43, 675–692 (2019)

    Article  Google Scholar 

  18. K.R. Babu, A. Parandhama, K.V. Raju et al., Unsteady MHD free convective flow of a visco-elastic fluid past an infinite vertical porous moving plate with variable temperature and concentration. Int. J. Appl. Comput. Math 3, 3411–3431 (2017)

    Article  MathSciNet  Google Scholar 

  19. M.T. Sk, K. Das, P.K. Kundu, Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles. J. Mol. Liq. 220, 518–526 (2016)

    Article  CAS  Google Scholar 

  20. N. Kanimozhi, R. Vijayaragavan, S. Karthikeyan, Multiple slip impacts on unsteady MHD micropolar fluid past a stretching sheet with non-Darcy porous medium and uneven heat source/sink. Heat Transf. 52(7), 4732–4754 (2023)

    Article  Google Scholar 

  21. K.S. Balamurugan, J.L. Ramaprasad, S.V.K. Varma, Unsteady MHD free convective flow past a moving vertical plate with time dependent suction and chemical reaction in a slip flow regime. Procedia Eng. 127, 516–523 (2015)

    Article  CAS  Google Scholar 

  22. P.S. Narayana, D.H. Babu, Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal radiation. J. Taiwan Inst. Chem. Eng. 59, 18–25 (2016)

    Article  Google Scholar 

  23. K. Das, N. Acharya, P.K. Kundu, Radiative flow of MHD Jeffrey fluid past a stretching sheet with surface slip and melting heat transfer. Alex. Eng. J. 54(4), 815–821 (2015)

    Article  Google Scholar 

  24. P.P. Kumar, B.S. Goud, B.S. Malga, Finite element study of Soret number effects on MHD flow of Jeffrey fluid through a vertical permeable moving plate. Partial Differ. Equ. Appl. Math. 1, 100005 (2020)

    Article  Google Scholar 

  25. N. Gulle, R. Kodi, Soret radiation and chemical reaction effect on MHD Jeffrey fluid flow past an inclined vertical plate embedded in porous medium. Mater. Today Proc. 50, 2218–2226 (2022)

    Article  CAS  Google Scholar 

  26. M.A. Kumar, Y.D. Reddy, B.S. Goud, V.S. Rao, Effects of soret, dufour, hall current and rotation on MHD natural convective heat and mass transfer flow past an accelerated vertical plate through a porous medium. Int. J. Thermofluids 9, 100061 (2021)

    Article  Google Scholar 

  27. K.S. Nisar, R. Mohapatra, S.R. Mishra, M.G. Reddy, Semianalytical solution of MHD free convective Jeffrey fluid flow in the presence of heat source and chemical reaction. Ain Shams Eng. J. 12(1), 837–845 (2021)

    Article  Google Scholar 

  28. S. Saleem, M. Abd El-Aziz, Entropy generation and convective heat transfer of radiated non-Newtonian power-law fluid past an exponentially moving surface under slip effects. Eur. Phys. J. Plus 134(4), 184 (2019)

    Article  Google Scholar 

  29. N.A. MohdZin, I. Khan, S. Shafie, Exact and numerical solutions for unsteady heat and mass transfer problem of Jeffrey fluid with MHD and Newtonian heating effects. Neural Comput. Appl. 30(11), 3491–3507 (2018)

    Article  Google Scholar 

  30. M. Abd El-Aziz, A.S. Yahya, Perturbation analysis of unsteady boundary layer slip flow and heat transfer of Casson fluid past a vertical permeable plate with Hall current. Appl. Math. Comput. 307, 146–164 (2017)

    MathSciNet  Google Scholar 

  31. T. Hayat, M.B. Ashraf, H.H. Alsulami, On mixed convection flow of Jeffrey fluid over an inclined stretching surface with thermal radiation. Heat Transf. Res. 46(6), 515–539 (2015)

    Article  Google Scholar 

  32. T. Hayat, A. Shafiq, A. Alsaedi, M. Awais, MHD axisymmetric flow of third grade fluid between stretching sheets with heat transfer. Comput. Fluids 86, 103–108 (2013)

    Article  MathSciNet  Google Scholar 

  33. N.A.M. Noor, S. Shafie, M.A. Admon, Unsteady MHD squeezing flow of Jeffrey fluid in a porous medium with thermal radiation, heat generation/absorption and chemical reaction. Phys. Scr. 95(10), 105213 (2020)

    Article  ADS  CAS  Google Scholar 

  34. O.D. Makinde, I.L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Therm. Sci. 109, 159–171 (2016)

    Article  CAS  Google Scholar 

  35. D. Srinivasacharya, K.H. Bindu, Entropy generation of micropolar fluid flow in an inclined porous pipe with convective boundary conditions. Sādhanā 42, 729–740 (2017)

    Article  MathSciNet  CAS  Google Scholar 

  36. J. Prakash, A. Sharma, D. Tripathi, Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J. Mol. Liq. 249, 843–855 (2018)

    Article  CAS  Google Scholar 

  37. P. Rana, M.J. Uddin, Y. Gupta, A.M. Ismail, Slip effects on MHD Hiemenz stagnation point nanofluid flow and heat transfer along a nonlinearly shrinking sheet with induced magnetic field: multiple solutions. J. Braz. Soc. Mech. Sci. Eng. 39, 3363–3374 (2017)

    Article  CAS  Google Scholar 

  38. M.G. Ibrahim, M.Y. Abou-Zeid, Computational simulation for MHD peristaltic transport of Jeffrey fluid with density-dependent parameters. Sci. Rep. 13(1), 9191 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. Dong, D. Li, M. Yu, K. Li, Research on electromagnetic electroosmotic flow of Jeffrey fluid through semicircular microchannel. Eng. Res. Express 5(4), 045083 (2023)

    Article  ADS  Google Scholar 

  40. D. Thenmozhi, M.E. Rao, R.R. Devi, C. Nagalakshmi, Analysis of Jeffrey fluid on MHD flow with stretching–porous sheets of heat transfer system. Forcesin Mech. 11, 100180 (2023)

    Article  Google Scholar 

  41. D. Li, K. Li, H. Li, Pulse electromagnetic flow of Jeffrey fluid in parallel plate microchannels. Phys. Scr. 98, 115202 (2023)

    Article  ADS  Google Scholar 

  42. A. Khan, T. Gul, I. Ali, H.A. Khalifa, T. Muhammad, W. Alghamdi, A.A. Shaaban, Thermal examination for double diffusive MHD Jeffrey fluid flow through the space of disc and cone apparatus subject to impact of multiple rotations. Int. J. Heat Fluid Flow 106, 109295 (2024)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rushi Kumar.

Appendix

Appendix

$$\begin{gathered} m_{1} = \frac{{\Pr + \sqrt {\Pr^{2} + 4\Pr \xi } }}{2} \hfill \\ m_{2} = \frac{{\Pr + \sqrt {\Pr^{2} + 4\Pr \left( {\xi + \frac{n}{4}} \right)} }}{2} \hfill \\ m_{3} = \frac{{{\text{Sc}} + \sqrt {{\text{Sc}}^{2} + 4{\text{ScKr}}} }}{2} \hfill \\ m_{4} = \frac{{{\text{Sc}} + \sqrt {{\text{Sc}}^{2} + 4{\text{Sc}}\left( {{\text{Kr}} + \frac{n}{4}} \right)} }}{2} \hfill \\ m_{5} = \frac{{1 + \sqrt {1 + 4\lambda_{1} N} }}{2} \hfill \\ m_{6} = \frac{{1 + \sqrt {1 + 4\lambda_{1} \left( {N + \frac{n}{4}} \right)} }}{2} \hfill \\ \end{gathered}$$
$$\begin{aligned} & A_{1} = \frac{1}{{1 + m_{1} h_{2} }} \\ & A_{2} = \frac{{ - A_{3} \left( {1 + m_{1} h_{2} } \right)}}{{\left( {1 + m_{2} h_{2} } \right)}} \\ & A_{3} = \frac{{\Pr Am_{1} A_{1} }}{{m_{1}^{2} - \Pr m_{1} - \Pr \left( {\xi + \frac{n}{4}} \right)}} \\ & A_{4} = \frac{{1 - A_{5} \left( {1 + m_{1} h_{3} } \right)}}{{1 + m_{3} h_{3} }} \\ & A_{5} = \frac{{ - {\text{ScSr}}m_{1}^{2} A_{1} }}{{m_{1}^{2} - {\text{Sc}}m_{1} - {\text{ScKr}}}} \\ & A_{6} = \frac{{ - A_{7} \left( {1 + h_{3} m_{3} } \right) - A_{8} \left( {1 + h_{3} m_{2} } \right) - A_{9} \left( {1 + h_{3} m_{1} } \right)}}{{\left( {1 + h_{3} m_{4} } \right)}} \\ & A_{7} = \frac{{{\text{Sc}}Am_{3} A_{4} }}{{m_{3}^{2} - {\text{Sc}}m_{3} - {\text{Sc}}\left( {{\text{Kr}} + \frac{n}{4}} \right)}} \\ & A_{8} = \frac{{ - {\text{ScSr}}m_{2}^{2} A_{2} }}{{m_{2}^{2} - {\text{Sc}}m_{2} - {\text{Sc}}\left( {{\text{Kr}} + \frac{n}{4}} \right)}} \\ & A_{9} = \frac{{{\text{Sc}}m_{1} \left( {AA_{5} - {\text{Sr}}m_{1} A_{3} } \right)}}{{m_{1}^{2} - {\text{Sc}}m_{1} - {\text{Sc}}\left( {Kr + \frac{n}{4}} \right)}} \\ & A_{10} = \frac{{u_{w} - A_{11} \left( {1 + h_{1} m_{3} } \right) - A_{12} \left( {1 + h_{1} m_{1} } \right) - 1}}{{\left( {1 + h_{1} m_{5} } \right)}} \\ & A_{11} = \frac{{ - {\text{Gm}}A_{4} \cos \alpha }}{{\lambda_{1} m_{3}^{2} - m_{3} - N}} \\ & A_{12} = \frac{{ - \left( {{\text{Gr}}A_{1} \cos \alpha + {\text{Gm}}A_{5} \cos \alpha } \right)}}{{\lambda_{1} m_{1}^{2} - m_{1} - N}} \\ & A_{13} = \frac{{ - A_{14} \left( {1 + h_{1} m_{5} } \right) - A_{15} \left( {1 + h_{1} m_{4} } \right) - A_{16} \left( {1 + h_{1} m_{3} } \right) - A_{17} \left( {1 + h_{1} m_{2} } \right) - A_{18} \left( {1 + h_{1} m_{1} } \right) - 1}}{{\left( {1 + h_{1} m_{6} } \right)}} \\ & A_{14} = \frac{{Am_{5} A_{10} }}{{\lambda_{1} m_{5}^{2} - m_{5} - \left( {N + \frac{n}{4}} \right)}} \\ & A_{15} = \frac{{ - GmA_{6} \cos \alpha }}{{\lambda_{1} m_{4}^{2} - m_{4} - \left( {N + \frac{n}{4}} \right)}} \\ & A_{16} = \frac{{Am_{3} A_{11} - GmA_{7} \cos \alpha }}{{\lambda_{1} m_{3}^{2} - m_{3} - \left( {N + \frac{n}{4}} \right)}} \\ & A_{17} = \frac{{ - \left( {GmA_{8} \cos \alpha + GrA_{2} \cos \alpha } \right)}}{{\lambda_{1} m_{2}^{2} - m_{2} - \left( {N + \frac{n}{4}} \right)}} \\ & A_{18} = \frac{{\left( {Am_{1} A_{12} - GrA_{3} \cos \alpha - GmA_{9} \cos \alpha } \right)}}{{\lambda_{1} m_{1}^{2} - m_{1} - \left( {N + \frac{n}{4}} \right)}} \\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanimozhi, N., Vijayaragavan, R., Rushi Kumar, B. et al. Investigation of Hall current and thermal diffusion effects on unsteady MHD mixed convective Jeffrey fluid flow over an inclined permeable surface with chemical reaction. Eur. Phys. J. Plus 139, 254 (2024). https://doi.org/10.1140/epjp/s13360-024-05077-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05077-3

Navigation