Skip to main content
Log in

Novel multiplexer, latch, and shift register in QCA nanotechnology for high-speed computing systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The current research goal is set to provide efficient design and a practical arrangement of the multiplexer, D-latch, and shift register in the quantum-dot cellular automata (QCA) technology. In the proposed multiplexer, including 14 cells, an area of 0.01 \({\mu {\text{m}}}^{2}\), a 0.5 clock cycle delay, and an energy consumption of 17.31 \({\text{meV}}\), the number of cells and energy consumption rates are reduced by 6.66 and 7.53% compared to the previous designs. Also, a D-latch is designed in this paper using the proposed multiplexer, which has been improved dramatically compared to the previously proposed methods. The proposed D-latch with 24 cells, an area of 0.02 \({\mu {\text{m}}}^{2}\), a 0.5 clock cycle delay, and energy consumption of 26.18 \({\text{meV}}\) reduced the delay and energy consumption rates, respectively, by 50 and 16.14% in comparison with the best previous designs. The reset and set terminals are also added to the proposed D-latch. The designed D-latches were used in a 4-bit shift register to demonstrate their accurate functioning in more complicated circuits. Accordingly, a 14.28% delay rate reduction resulted. Also, the proposed shift register contains 149 cells, an area of 0.11 \({\mu {\text{m}}}^{2}\), a 1.5 clock cycle delay, and an energy consumption of 156.05 \({\text{meV}}\). The simulation of the proposed circuits was made by QCADesigner and QCAPro tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. The data that support the findings of this study are available on request from the corresponding author.

References

  1. A.H. Majeed, E.A. Alkaldy. A unique universal block in QCA technology. e-Prime-Adv. Electr. Eng. Electron. Energy. 2023;5:100220. https://doi.org/10.1016/j.prime.2023.100220

  2. S. Jeon, H. Lee, H.S., Kim, Y. Kim Y. Universal shift register: QCA based novel technique for memory storage modules. J. VLSI Circuits Syst. 2023;5(02):15–21. https://doi.org/10.31838/jvcs/05.02.03

  3. H. Alamdar, G. Ardeshir, M. Gholami, Using universal nand-nor-inverter gate to design D-latch and D flip-flop in quantum-dot cellular automata nanotechnology. Int. J. Eng. 34(7), 1710–1717 (2021). https://doi.org/10.5829/ije.2021.34.07a.15

    Article  Google Scholar 

  4. T.N. Sasamal, A.K. Singh, U. Ghanekar. Design of QCA-Based D flip flop and memory cell using rotated majority gate. In: Smart innovations in communication and computational sciences 2019 (pp. 233–247). Springer, Singapore. https://doi.org/10.1007/978-981-10-8971-8_22

  5. V. Jaiswal, T.N. Sasamal, MQCA-based dipole coupled multiplexer design using permalloy. Euro. Phys. J. Plus. 138(10), 961 (2023). https://doi.org/10.1140/epjp/s13360-023-04619-5

    Article  Google Scholar 

  6. M. Gholami, Z. Amirzadeh, Novel low-latency T-Latch with minimum number of cells in QCA technology. Adv. Theory Simulat. 6(1), 2200686 (2023). https://doi.org/10.1002/adts.202200686

    Article  CAS  Google Scholar 

  7. A.Y. Begum, M. Balaji, V. Satyanarayana, Quantum dot cellular automata using a one-bit comparator for QCA gates. Mater. Today Proc. (2022). https://doi.org/10.1016/j.compeleceng.2022.107998

    Article  Google Scholar 

  8. M.S. Gade, S. Rooban, Quantum-dot Cellular Automata circuits using an efficient design and performance analysis. Sustain. Energy Technol. Assess. 48, 101603 (2021). https://doi.org/10.1016/j.seta.2021.101603

    Article  Google Scholar 

  9. A. Tiwari, M. Patidar, A. Jain, N. Patidar, N. Gupta, Efficient designs of high-speed combinational circuits and optimal solutions using 45-degree cell orientation in QCA nanotechnology. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.06.174

    Article  PubMed  Google Scholar 

  10. J.C. Jeon, Q.C.A. Multi-Layer, Shift registers and wiring structure for LFSR in stream Cipher with low energy dissipation in quantum nanotechnology. Electronics 12(19), 4093 (2023). https://doi.org/10.3390/electronics12194093

    Article  Google Scholar 

  11. R. Singh, P. Singh. Reversible logic based single layer flip flops and shift registers in QCA framework for the application of nano-communication. In: Paradigms of Smart and intelligent communication, 5G and beyond 2023 May 24 (pp. 197–219). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0109-8_11

  12. A.N. Bahar, K.A. Wahid, Design and implementation of an N× 32-bit SRAM in QCA using coplanar wire-crossing network. Optik 266, 169577 (2022). https://doi.org/10.1016/j.ijleo.2022.169577

    Article  ADS  CAS  Google Scholar 

  13. M.M. Fazili, M.F. Shah, S.F. Naz, A.P. Shah, Next generation QCA technology based true random number generator for cryptographic applications. Microelectron. J. 126, 105502 (2022). https://doi.org/10.1016/j.mejo.2022.105502

    Article  Google Scholar 

  14. S.K. Rad, S.R. Heikalabad, Reversible flip-flops in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2990–3004 (2017). https://doi.org/10.1007/s10773-017-3575-4

    Article  Google Scholar 

  15. J. C. Jeon. Low-complexity QCA universal shift register design using multiplexer and D flip-flop based on electronic correlations. J. Supercomput. 2019, pp 1–5. https://doi.org/10.1007/s11227-019-02962-y

  16. H. Alamdar, G. Ardeshir, M. Gholami, Novel quantum-dot cellular automata implementation of flip-flop and phase-frequency detector based on nand-nor-inverter gates. Int. J. Circuit Theory Appl. (2020). https://doi.org/10.1002/cta.2825

    Article  Google Scholar 

  17. S. Hashemi, K. Navi, New robust QCA D flip flop and memory structures. Microelectron. J. 43(12), 929–940 (2012). https://doi.org/10.1016/j.mejo.2012.10.007

    Article  Google Scholar 

  18. N. Ravi, M.B. Veena, Design of an efficient ALU blocks in quantum dot cellular automata (QCA). Global Transit. Proc. (2022). https://doi.org/10.1016/j.gltp.2022.03.004

    Article  Google Scholar 

  19. M. Gholami, M. Movahedi, Z. Amirzadeh, Latch and flip-flop design in QCA technology with minimum number of cells. Comput. Electr. Eng. 102, 108186 (2022). https://doi.org/10.1016/j.compeleceng.2022.108186

    Article  Google Scholar 

  20. A.M. Chabi, A. Roohi, R.F. DeMara, S. Angizi, K. Navi, H. Khademolhosseini. Cost-efficient QCA reversible combinational circuits based on a new reversible gate. In: 2015 18th CSI international symposium on computer architecture and digital systems (CADS) 2015 Oct 7 (pp. 1–6) (IEEE, New York). https://doi.org/10.1109/CADS.2015.7377779

  21. A. Roohi, H. Khademolhosseini, S. Sayedsalehi, K. Navi. A novel architecture for quantum-dot cellular automata multiplexer. Int. J. Comp. Sci. Issues. 2011;8(1). https://doi.org/10.1016/j.nancom.2023.100435

  22. R. Sabbaghi-Nadooshan, M. Kianpour, A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014). https://doi.org/10.1007/s10825-013-0500-9

    Article  Google Scholar 

  23. J.C. Das, D. De, Shannon’s expansion theorem-based multiplexer synthesis using QCA, Nanomater. Energy 5, 53–60 (2016). https://doi.org/10.1680/jnaen.15.00008

    Article  Google Scholar 

  24. V. Jain, D.K. Sharma, H.M. Gaur, A.K. Singh, X. Wen, Comprehensive and comparative analysis of QCA-based circuit designs for next-generation computation. ACM Comput. Surv. 56(5), 1–36 (2023). https://doi.org/10.1145/3622932

    Article  Google Scholar 

  25. V. Jain, D.K. Sharma, H.M. Gaur, Faster access cost-efficient design of RAM cell using multilayer crossover in QCA. Euro. Phys. J. Plus. 138(3), 190 (2023). https://doi.org/10.1140/epjp/s13360-023-03800-0

    Article  Google Scholar 

  26. B. Sen, M. Dutta, M. Goswami, B.K. Sikdar, Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45(11), 1522–1532 (2014). https://doi.org/10.1016/j.mejo.2014.08.012

    Article  Google Scholar 

  27. A. Khan, R. Arya. Energy dissipation and cell displacement analysis of QCA multiplexer for nanocomputation. In: 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP) 2019 Jul 4 (pp. 1–5). New York, IEEE. https://doi.org/10.1109/ICESIP46348.2019.8938359

  28. J.C. Das, D.D. De. Optimized multiplexer design and simulation using quantum dot-cellular automata. Indian J. Pure Appl. Phys. (IJPAP). 2016;54(12):802–11. https://doi.org/10.56042/ijpap.v54i12.6108

  29. A. Rezai, D. Aliakbari, A. Karimi, Novel multiplexer circuit design in quantum-dot cellular automata technology. Nano Commun. Netw. 35, 100435 (2023). https://doi.org/10.1016/j.nancom.2023.100435

    Article  Google Scholar 

  30. H. Rashidi, A. Rezai, S. Soltany, High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016). https://doi.org/10.1007/s10825-016-0832-3

    Article  Google Scholar 

  31. F. Ahmad, M. Mustafa, N.A. Wani, F.A. Mir, A novel idea of pseudo-code generator in quantum-dot cellular automata (QCA). Int. J. Simul. Multi. Design Optim. 5, A04 (2014). https://doi.org/10.1051/smdo/2013012

    Article  Google Scholar 

  32. J.I. Reshi, M.T. Banday, F.A. Khanday. Sequential circuit design using quantum-dot cellular automata (QCA). In: 2015 Symposium on Computers, Communication and Electronic Engineering, pp. 143–148 (2015). https://doi.org/10.13140/RG.2.1.1759.4326

  33. M. Goswami, B. Kumar, H. Tibrewal, S. Mazumdar. Efficient realization of digital logic circuit using QCA multiplexer. In: 2014 2nd International conference on business and information management (ICBIM) 2014 Jan 9 (pp. 165–170). (IEEE, New York). https://doi.org/10.1109/ICBIM.2014.6970972

  34. V. Jain, D.K. Sharma, H.M. Gaur, Fault-tolerant design of shift register using multilayer crossover in QCA. Euro. Phys. J. Plus. 138(5), 453 (2023). https://doi.org/10.1140/epjp/s13360-023-04035-9

    Article  Google Scholar 

  35. S. Zoka, M. Gholami, A novel rising edge triggered resettable D flip-flop using five input majority gate. Microprocess. Microsyst. 61, 327–335 (2018). https://doi.org/10.1016/j.micpro.2018.06.006

    Article  Google Scholar 

  36. M.G. Roshan, M. Gholami, 4-Bit serial shift register with reset ability and 4-bit LFSR in QCA technology using minimum number of cells and delay. Comput. Electr. Eng. 78, 449–462 (2019). https://doi.org/10.1016/j.compeleceng.2019.08.002

    Article  Google Scholar 

  37. M.G. Roshan, M. Gholami, Novel D latches and D flip-flops with set and reset ability in QCA nanotechnology using minimum cells and area. Int. J. Theor. Phys. 57(10), 3223–3241 (2018). https://doi.org/10.1007/s10773-018-3840-1

    Article  Google Scholar 

  38. M.N. Divshali, A. Rezai, A. Karimi, Towards multilayer QCA SISO shift register based on efficient D-FF circuits. Int. J. Theor. Phys. 57(11), 3326–3339 (2018). https://doi.org/10.1007/s10773-018-3846-8

    Article  MathSciNet  Google Scholar 

  39. T. Li, R. Kornovich, An optimized design of serial-input-serial-output (SISO) and parallel-input-parallel-output (PIPO) shift registers based on quantum dot cellular automata nanotechnology. Int. J. Theor. Phys. 58(11), 3684–3693 (2019). https://doi.org/10.1007/s10773-019-04238-w

    Article  Google Scholar 

  40. M. Abdullah-Al-Shafi, R. Ziaur, Analysis and modeling of sequential circuits in QCA nano computing: RAM and SISO register study. Solid State Electron. Lett. 1(2), 73–83 (2019). https://doi.org/10.1016/j.ssel.2019.11.004

    Article  Google Scholar 

  41. J.C. Das, D. De, Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23, 4155–4168 (2017). https://doi.org/10.1007/s00542-016-3085-y

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Anahita Alghosi performed conceptualization, methodology, software, validation, formal analysis, investigation, resources, writing—original draft, and visualization. Mohammad Gholami provided conceptualization, methodology, investigation, resources, writing—review & editing, and supervision. Seyed Saleh Ghoreishi analyzed conceptualization, methodology, investigation, writing—review & editing, and supervision. Habib Adarang presented conceptualization, methodology, investigation, writing—review & editing, and supervision.

Corresponding author

Correspondence to Mohammad Gholami.

Ethics declarations

Conflict of interests

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghosi, A., Gholami, M., Ghoreishi, S.S. et al. Novel multiplexer, latch, and shift register in QCA nanotechnology for high-speed computing systems. Eur. Phys. J. Plus 139, 266 (2024). https://doi.org/10.1140/epjp/s13360-024-05060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05060-y

Navigation