Skip to main content
Log in

Spatiotemporal patterns of the network composed of modified Chua’s circuits with distributed coupling

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

To further investigate the formation mechanism of spatiotemporal patterns, a network which is composed of modified Chua’s circuits is constructed. The dynamics of the modified Chua’s circuit with appropriate parameters are presented via numerical computation and circuit simulation. The spatiotemporal patterns of the regular network and the network with distributed coupling are studied, respectively. Spiral wave can be induced in the network on the condition of initial values. The spread speed of the spiral wave in the regions with larger coupling intensity is faster than those regions with smaller coupling intensity, which could result in spiral waves in different regions having different shapes. Various interesting spatiotemporal patterns can be formed in the network under the influence of distributed coupling and initial conditions. In addition, the spatiotemporal patterns in the network with distributed coupling under external periodic excitation and noise perturbation are studied, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data will be made available on reasonable request].

References

  1. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 641 (1952). https://doi.org/10.1098/rstb.1952.0012

    Article  MathSciNet  Google Scholar 

  2. D. Schnörr, C. Schnörr, Learning system parameters from turing patterns. Mach. Learn. 112, 3151–3190 (2023). https://doi.org/10.1007/s10994-023-06334-9

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  3. B.M. Alessio, A. Gupta, Diffusiophoresis-enhanced Turing patterns. Sci. Adv. 9, 2457 (2023). https://doi.org/10.1126/sciadv.adj2457

    Article  Google Scholar 

  4. Q. Zheng, J.W. Shen, R. Zhang, L. Guan, Y. Xu, Spatiotemporal patterns in a general networked Hindmarsh–Rose model. Front. Physiol. 13, 936982 (2022). https://doi.org/10.3389/fphys.2022.936982

    Article  PubMed  PubMed Central  Google Scholar 

  5. S. Kondo, R. Asai, A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768 (1995). https://doi.org/10.1038/376765a0

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Z.R. Xing, G.P. Zhang, J.Y. Gao, J. Ye, Z.Q. Zhou, B.Y. Liu, X.T. Yan, X.Q. Chen, M.H. Guo, K. Yue, X.Z. Li, Q. Wang, J. Liu, Turing instability of liquid-solid metal systems. Adv. Mater. (2023). https://doi.org/10.1002/adma.202309999

    Article  PubMed  Google Scholar 

  7. Z. Xiang, J. Li, P. You, L.B. Han, M.X. Qiu, G.L. Chen, Y. He, S.Q. Liang, B.Y. Xiang, Y.R. Su, H.Y. An, S.P. Li, Turing patterns with high-resolution formed without chemical reaction in thin-film solution of organic semiconductors. Nat. Commun. 13, 7422 (2022). https://doi.org/10.1038/s41467-022-35162-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Smidtaite, M. Ragulskis, Spiral waves of divergence in the Barkley model of nilpotent matrices. Chaos Soliton. Fract. 159, 112158 (2022). https://doi.org/10.1016/j.chaos.2022.112158

    Article  MathSciNet  Google Scholar 

  9. Y.P. Hu, Q.M. Ding, Y. Wu, Y. Jia, Polarized electric field-induced drift of spiral waves in discontinuous cardiac media. Chaos Soliton. Fract. 175, 1157 (2023). https://doi.org/10.1016/j.chaos.2023.113957

    Article  MathSciNet  Google Scholar 

  10. G.Y. Yuan, Z.M. Gao, S.T. Yan, G.R. Wang, Termination of a pinned spiral wave by the wave train with a free defect. Nonlinear Dyn. 104, 2583–2597 (2021)

    Article  Google Scholar 

  11. J.M. Davidenko, A.V. Perstov, R. Salomonsz, W. Baxter, J. Jalife, Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349–351 (1992). https://doi.org/10.1038/355349a0

    Article  ADS  CAS  PubMed  Google Scholar 

  12. J. Jalife, R.A. Gray, G.E. Morley, J.M. Davidenko, Self-organization and the dynamical nature of ventricular fibrillation. Chaos 8(1), 79–93 (1998). https://doi.org/10.1063/1.166289

    Article  ADS  PubMed  Google Scholar 

  13. J. Ma, Q.R. Liu, H.P. Ying, Y. Wu, Emergence of spiral wave induced by defects block. Commun. Nonlinear Sci. Numer. Simulat. 18, 1665–1675 (2013). https://doi.org/10.1016/j.cnsns.2012.11.016

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Ma, Y. Xu, G.D. Ren, C.N. Wang, Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn. 84, 497–509 (2016). https://doi.org/10.1007/s11071-015-2502-6

    Article  MathSciNet  Google Scholar 

  15. J. Wang, Z. Rostami, S. Jafari, F.E. Alsaadi, M. Slavinec, M. Perc, Suppression of spiral wave turbulence by means of periodic plane waves in two-layer excitable media. Chaos Soliton. Fract. 128, 229–233 (2019). https://doi.org/10.1016/j.chaos.2019.07.045

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Gao, C.G. Gu, H.J. Yang, Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle. Chinese Phys. B 30, 070501 (2021). https://doi.org/10.1088/1674-1056/abf553

    Article  ADS  Google Scholar 

  17. K. Rajagopal, S. Jafari, I. Moroz, A. Karthikeyan, Noise induced suppression of spiral waves in a hybrid FitzHugh-Nagumo neuron with discontinuous resetting. Chaos 31, 073117 (2021). https://doi.org/10.1063/5.0059175

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  18. Y. Wu, J.J. Li, S.B. Liu, J.Z. Pang, M.M. Du, P. Lin, Noise-induced spatiotemporal patterns in Hodgkin-Huxley neuronal network. Cogn. Neurodyn. 7, 431–440 (2013). https://doi.org/10.1007/s11571-013-9245-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. L.F. Dong, Z.G. Bai, Y.F. He, Sparse and dense spiral waves in heterogeneous excitable media. Acta. Phys. Sin-Ch. Ed. 61, 120509 (2012). https://doi.org/10.7498/aps.61.120509

    Article  Google Scholar 

  20. W.H. Li, F. Pan, W.X. Li, G.N. Tang, Dynamics of spiral waves in an asymmetrically coupled two-layer excitable medium. Acta. Phys. Sin-Ch. Ed. 64, 198201 (2015). https://doi.org/10.7498/aps.64.198201

    Article  CAS  Google Scholar 

  21. Y. Xu, C.N. Wang, W.Y. Jin, J. Ma, Investigation of emergence of target wave and spiral wave in neuronal network induced by gradient coupling. Acta. Phys. Sin-Ch. Ed. 64, 198701 (2015). https://doi.org/10.7498/aps.64.198701

    Article  CAS  Google Scholar 

  22. Y. Wu, Q.M. Ding, D. Yu, T.Y. Li, Y. Jia, Pattern formation induced by gradient field coupling in bi-layer neuronal networks. Eur. Phys. J. Spec. Top. 231, 4077–4088 (2022). https://doi.org/10.1140/epjs/s11734-022-00628-0

    Article  Google Scholar 

  23. C.U. Choe, R.S. Kim, H. Jo, Spiral wave chimeras induced by heterogeneity in phase lags and time delays. Physica D 422, 132892 (2021). https://doi.org/10.1016/j.physd.2021.132892

    Article  MathSciNet  Google Scholar 

  24. F. Li, J. Ma, Pattern selection in network of coupled multi-scroll attractors. PLoS ONE 11, e0154282 (2016). https://doi.org/10.1371/journal.pone.0154282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A.P. Muiiuzur, V.P. Muiiuzuri, V.P. Villar, L.O. Chua, Spiral waves on a 2-D array of nonlinear circuits. IEEE Trans. Circuits Syst. I 40, 872–877 (1993). https://doi.org/10.1109/81.251828

    Article  Google Scholar 

  26. L. Pivka, Autowaves and spatio-temporal chaos in CNNs Part I: A tutorial. IEEE Trans. Circuits Syst. I 42, 638–649 (1995). https://doi.org/10.1109/81.473570

    Article  Google Scholar 

  27. L. Pivka, Autowaves and spatio-temporal chaos in CNNs Part II: a tutorial. IEEE Trans. Circuits-I. 42(10), 650–664 (1995). https://doi.org/10.1109/81.473571

    Article  ADS  Google Scholar 

  28. C.N. Wang, J. Ma, Y. Liu, L. Huang, Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67, 139–146 (2012). https://doi.org/10.1007/s11071-011-9965-x

    Article  Google Scholar 

  29. G. Hu, J.H. Xiao, L.O. Chua, L. Pivka, Controlling spiral waves in a model of two-dimensional arrays of Chua’s circuits. Phys. Rev. Lett. 80, 1884–1887 (1998). https://doi.org/10.1103/PhysRevLett.80.1884

    Article  ADS  CAS  Google Scholar 

  30. L.O. Chua, M. Komuro, T. Matsumoto, The double scroll family. IEEE Trans. Circuits Syst. 33, 1072–1118 (1986). https://doi.org/10.1109/TCS.1986.1085869

    Article  ADS  Google Scholar 

  31. B. Hou, P. Zhou, G.D. Ren, J. Ma, Energy flow controls synchronization in a network coupled with memristive synapses. Eur. Phys. J. Plus 138, 293 (2023)

    Article  Google Scholar 

  32. Z. Yao, P. Zhou, A. Alsaedi, J. Ma, Energy flow-guided synchronization between chaotic circuits. Appl. Math. Comput. 374, 124998 (2020). https://doi.org/10.1016/j.amc.2019.124998

    Article  MathSciNet  Google Scholar 

  33. D.H. Kobe, Helmholtz’s theorem revisited. Am. J. Phys. 54, 552–554 (1986). https://doi.org/10.1119/1.14562

    Article  ADS  Google Scholar 

  34. M.J. Hua, H.G. Wu, Q. Xu, M. Chen, B.C. Bao, Asymmetric memristive Chua’s chaotic circuits. Int. J. Electron. 07, 1106–1123 (2021). https://doi.org/10.1080/00207217.2020.1819440

    Article  Google Scholar 

  35. M. Chen, A.K. Wang, C. Wang, H.G. Wu, B.C. Bao, DC-offset-induced hidden and asymmetric dynamics in Memristive Chua’s circuit. Chaos Soliton Fract. 160, 112192 (2022). https://doi.org/10.1016/j.chaos.2022.112192

    Article  MathSciNet  Google Scholar 

  36. Y. Xu, J. Ma, Pattern formation in a thermosensitive neural network. Commun. Nonlinear Sci. 111, 106426 (2022). https://doi.org/10.1016/j.cnsns.2022.106426

    Article  MathSciNet  Google Scholar 

  37. H.X. Qin, J. Ma, G.D. Ren, P. Zhou, Field coupling-induced wave propagation and pattern stability in a two-layer neuronal network under noise. Int. J. Mod. Phys. B 32, 1850298 (2018). https://doi.org/10.1142/S0217979218502983

    Article  ADS  Google Scholar 

  38. Y. Wang, J. Ma, Y. Xu, F.Q. Wu, P. Zhou, The Electrical Activity of Neurons Subject to Electromagnetic Induction and Gaussian White Noise. Int. J. Bifurcat. Chaos 27, 1750030 (2017). https://doi.org/10.1142/S0218127417500304

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express sincerely appreciation to the anonymous reviewers for their efforts in reviewing the manuscript. This work is supported by National Natural Science Foundation of China (Grant Nos. 11872327 and 51777180) and Natural Science Research Project of Jiangsu Colleges and Universities (20KJA190001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuolei Wang.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, L., Shi, X. & Wang, Z. Spatiotemporal patterns of the network composed of modified Chua’s circuits with distributed coupling. Eur. Phys. J. Plus 139, 194 (2024). https://doi.org/10.1140/epjp/s13360-024-04969-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04969-8

Navigation