Skip to main content
Log in

Collisions of particles near Kerr-MOG black holes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We consider the collision of two particles having distinct rest masses and orbiting near a Kerr-MOG black hole, and we further determine the center-of-mass energy (i.e., CME) associated with the particles. It is found that the CME energy is influenced not only by the rotation parameter a, but also by the MOG parameter \(\alpha\). Notably, it is shown that an extremal Kerr-MOG black hole case leads to surprisingly high the CME if and only if the parameter a satisfies the values given in the range \((0,\sqrt{1+\alpha })\) which diverges from that observed in Kerr-like black holes, thus highlighting the distinct characteristics of Kerr-MOG black holes. We present compelling evidence suggesting that Kerr-MOG black holes potentially act as significant generators for high-energy particles within the polar region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

This research has no associated experimental and observational data.

References

  1. J.W. Moffat, Scalar tensor vector gravity theory. JCAP 2006, 004 (2006) [arXiv:gr-qc/gr-qc/0506021]

  2. J.W. Moffat, Time delay predictions in a modified gravity theory. Class. Quantum Gravit. 23, 6767–6771 (2006). arXiv:gr-qc/gr-qc/0605141

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. J.W. Moffat, V.T. Toth, Testing modified gravity with globular cluster velocity dispersions. ApJ 680, 1158–1161 (2008). https://doi.org/10.1086/587926. arXiv:astro-ph/0708.1935

    Article  ADS  Google Scholar 

  4. J.W. Moffat, V.T. Toth, The bending of light and lensing in modified gravity. MNRAS 397, 1885–1892 (2009). https://doi.org/10.1111/j.1365-2966.2009.14876.x. arXiv:astro-ph/0805.4774

    Article  ADS  Google Scholar 

  5. J.R. Brownstein, J.W. Moffat, The bullet cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter. MNRAS 382, 29–47 (2007). https://doi.org/10.1111/j.1365-2966.2007.12275.x. arXiv:astro-ph/astro-ph/0702146

    Article  ADS  Google Scholar 

  6. J.W. Moffat, A modified gravity and its consequences for the solar system, astrophysics and cosmology. Int. J. Mod. Phys. D 16, 2075–2090 (2007). https://doi.org/10.1142/S0218271807011577. arXiv:gr-qc/gr-qc/0608074

    Article  ADS  Google Scholar 

  7. S. Rahvar, J.W. Moffat, Propagation of electromagnetic waves in MOG: gravitational lensing. MNRAS 482, 4514–4518 (2019). https://doi.org/10.1093/mnras/sty3002. arXiv:gr-qc/1807.07424

    Article  ADS  Google Scholar 

  8. J. Moffat, S. Rahvar, V. Toth, Applying MOG to lensing: Einstein rings, Abell 520 and the bullet cluster. Galaxies 6, 43 (2018). https://doi.org/10.3390/galaxies6020043

    Article  ADS  Google Scholar 

  9. A. Övgün, İ Sakallı, J. Saavedra, Weak gravitational lensing by Kerr-MOG black hole and Gauss-Bonnet theorem. Ann. Phys. 411, 167978 (2019). https://doi.org/10.1016/j.aop.2019.167978. arXiv:gr-qc/1806.06453

    Article  MathSciNet  Google Scholar 

  10. G.Y. Tuleganova, R.N. Izmailov, R.K. Karimov, A.A. Potapov, K.K. Nandi, Times of arrival (TOA) of signals in the Kerr-MOG black hole. Gen. Relativ. Gravit. 52, 31 (2020). https://doi.org/10.1007/s10714-020-02684-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. R.N. Izmailov, R.K. Karimov, E.R. Zhdanov, K.K. Nandi, Modified gravity black hole lensing observables in weak and strong field of gravity. MNRAS 483, 3754–3761 (2019). https://doi.org/10.1093/mnras/sty3350. arXiv:gr-qc/1905.01900

    Article  ADS  Google Scholar 

  12. J.W. Moffat, Modified gravity black holes and their observable shadows. Eur. Phys. J. C 75, 130 (2015). https://doi.org/10.1140/epjc/s10052-015-3352-6. arXiv:gr-qc/1502.01677

    Article  ADS  Google Scholar 

  13. J.W. Moffat, V.T. Toth, Masses and shadows of the black holes Sagittarius A* and M87* in modified gravity. Phys. Rev. D 101, 024014 (2020). https://doi.org/10.1103/PhysRevD.101.024014. arXiv:gr-qc/1904.04142

    Article  ADS  MathSciNet  Google Scholar 

  14. J.R. Mureika, J.W. Moffat, M. Faizal, Black hole thermodynamics in modified gravity (MOG). Phys. Lett. B 757, 528–536 (2016). https://doi.org/10.1016/j.physletb.2016.04.041. arXiv:gr-qc/1504.08226

    Article  ADS  MATH  Google Scholar 

  15. L. Manfredi, J. Mureika, J. Moffat, Quasinormal modes of static modified gravity (MOG) black holes. In: proceedings of the journal of physics conference series, 2017, Vol. 942, Journal of Physics Conference Series, p. 012014. (2017). https://doi.org/10.1088/1742-6596/942/1/012014

  16. L. Manfredi, J. Mureika, J. Moffat, Quasinormal modes of modified gravity (MOG) black holes. Phys. Lett. B 779, 492–497 (2018). https://doi.org/10.1016/j.physletb.2017.11.006. arXiv:gr-qc/1711.03199

    Article  ADS  MATH  Google Scholar 

  17. L. Manfredi, J. Mureika, J. Moffat, Quasinormal modes of modified gravity (MOG) black holes. J. Undergrad. Rep. Phys. 29, 100006 (2019). https://doi.org/10.1063/1.5129246

    Article  ADS  MATH  Google Scholar 

  18. M.A. Green, J.W. Moffat, V.T. Toth, Modified gravity (MOG), the speed of gravitational radiation and the event GW170817/GRB170817A. Phys. Lett. B 780, 300–302 (2018). https://doi.org/10.1016/j.physletb.2018.03.015. arXiv:gr-qc/1710.11177

    Article  ADS  MATH  Google Scholar 

  19. K. Düztaş, Overspinning Kerr-MOG black holes by test fields and the third law of black hole dynamics. Eur. Phys. J. C 80, 19 (2020). https://doi.org/10.1140/epjc/s10052-020-7607-5. arXiv:gr-qc/1907.13435

    Article  ADS  Google Scholar 

  20. M. Sharif, M. Shahzadi, Particle dynamics near Kerr-MOG black hole. Eur. Phys. J. C 77, 363 (2017). https://doi.org/10.1140/epjc/s10052-017-4898-2. arXiv:gr-qc/1705.03058

    Article  ADS  Google Scholar 

  21. H.C. Lee, Y.J. Han, Innermost stable circular orbit of Kerr-MOG black hole. Eur. Phys. J. C 77, 655 (2017). https://doi.org/10.1140/epjc/s10052-017-5152-7. arXiv:gr-qc/1704.02740

    Article  ADS  Google Scholar 

  22. D. Pérez, F.G.L. Armengol, G.E. Romero, Accretion disks around black holes in scalar-tensor-vector gravity. Phys. Rev. D 95, 104047 (2017). https://doi.org/10.1103/PhysRevD.95.104047. arXiv:astro-ph.HE/1705.02713

    Article  ADS  Google Scholar 

  23. P. Pradhan, Study of energy extraction and epicyclic frequencies in Kerr-MOG (modified gravity) black hole. Eur. Phys. J. C 79, 401 (2019). https://doi.org/10.1140/epjc/s10052-019-6907-0. arXiv:gr-qc/1810.03290

    Article  ADS  Google Scholar 

  24. M. Kološ, M. Shahzadi, Z. Stuchlík, Quasi-periodic oscillations around Kerr-MOG black holes. Eur. Phys. J. C 80, 133 (2020). https://doi.org/10.1140/epjc/s10052-020-7692-5

    Article  ADS  Google Scholar 

  25. J. Rayimbaev, P. Tadjimuratov, A. Abdujabbarov, B. Ahmedov, M. Khudoyberdieva, Dynamics of test particles and twin peaks QPOs around regular black holes in modified gravity. Galaxies 9, 75 (2021). https://doi.org/10.3390/galaxies9040075. arXiv:gr-qc/2010.12863

    Article  ADS  Google Scholar 

  26. R. Della Monica, I. de Martino, M. de Laurentis, Orbital precession of the S2 star in scalar-tensor-vector gravity. MNRAS 510, 4757–4766 (2022). https://doi.org/10.1093/mnras/stab3727. arXiv:gr-qc/2105.12687

    Article  ADS  Google Scholar 

  27. R. Della Monica, I. de Martino, M. de Laurentis, Constraining modified gravity with the S2 star. Universe 8, 137 (2022). https://doi.org/10.3390/universe8020137. arXiv:gr-qc/2206.12699

    Article  ADS  Google Scholar 

  28. B.V. Turimov, Comment on “orbital precession of the S2 star in scalar-tensor-vector gravity’’. MNRAS 516, 434–436 (2022). https://doi.org/10.1093/mnras/stac2113

    Article  ADS  Google Scholar 

  29. R. Della Monica, I. de Martino, M. de Laurentis, Response to: comment on ‘orbital precession of the S2 star in scalar-tensor-vector gravity’. MNRAS 521, 474–477 (2023). https://doi.org/10.1093/mnras/stad579. arXiv:gr-qc/2302.12296

    Article  ADS  Google Scholar 

  30. B. Turimov, H. Alibekov, P. Tadjimuratov, A. Abdujabbarov, Gravitational synchrotron radiation and Penrose process in STVG theory. Phys. Lett. B 843, 138040 (2023). https://doi.org/10.1016/j.physletb.2023.138040

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Khodadi, D.F. Mota, A. Sheykhi, Harvesting energy driven by Comisso-Asenjo process from Kerr-MOG black holes. JCAP 2023, 034 (2023). https://doi.org/10.1088/1475-7516/2023/10/034. arXiv:astro-ph.HE/2307.00478

    Article  Google Scholar 

  32. R.P. Fender, T.M. Belloni, E. Gallo, Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 355, 1105–1118 (2004). https://doi.org/10.1111/j.1365-2966.2004.08384.x. arXiv:astro-ph/astro-ph/0409360

    Article  ADS  Google Scholar 

  33. K. Auchettl, J. Guillochon, E. Ramirez-Ruiz, New physical insights about tidal disruption events from a comprehensive observational inventory at X-ray wavelengths. Astrophys. J. 838, 149 (2017). https://doi.org/10.3847/1538-4357/aa633b. arXiv:astro-ph.HE/1611.02291

    Article  ADS  Google Scholar 

  34. The IceCube Collaboration.; et al.. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378, [arXiv:gr-qc/1807.08816]. https://doi.org/10.1126/science.aat1378

  35. M. Bañados, J. Silk, S.M. West, Kerr black holes as particle accelerators to arbitrarily high energy. Phys. Rev. Lett. 103, 111102 (2009). https://doi.org/10.1103/PhysRevLett.103.111102. arXiv:hep-ph/0909.0169

    Article  ADS  Google Scholar 

  36. T. Jacobson, T.P. Sotiriou, Spinning black holes as particle accelerators. Phys. Rev. Lett. 104, 021101 (2010). https://doi.org/10.1103/PhysRevLett.104.021101. arXiv:gr-qc/0911.3363

    Article  ADS  Google Scholar 

  37. K. Lake, Particle accelerators inside spinning black holes. Phys. Rev. Lett. 104, 211102 (2010). https://doi.org/10.1103/PhysRevLett.104.211102. arXiv:gr-qc/1001.5463

    Article  ADS  Google Scholar 

  38. M. Kimura, K.I. Nakao, H. Tagoshi, Acceleration of colliding shells around a black hole: validity of the test particle approximation in the Banados-silk-west process. Phys. Rev. D 83, 044013 (2011). https://doi.org/10.1103/PhysRevD.83.044013. arXiv:gr-qc/1010.5438

    Article  ADS  Google Scholar 

  39. O.B. Zaslavskii, Acceleration of particles as a universal property of rotating black holes. Phys. Rev. D 82, 083004 (2010). https://doi.org/10.1103/PhysRevD.82.083004. arXiv:gr-qc/1007.3678

    Article  ADS  Google Scholar 

  40. O.B. Zaslavskii, Acceleration of particles by nonrotating charged black holes? Soviet J. Exp. Theor. Phys. Lett. 92, 571–574 (2010). https://doi.org/10.1134/S0021364010210010. arXiv:gr-qc/1007.4598

    Article  Google Scholar 

  41. F. Atamurotov, B. Ahmedov, S. Shaymatov, Formation of black holes through BSW effect and black hole-black hole collisions. Astrophys. Space Sci. 347, 277–281 (2013). https://doi.org/10.1007/s10509-013-1527-x

    Article  ADS  Google Scholar 

  42. O.B. Zaslavskii, Acceleration of particles by black holes: kinematic explanation. Phys. Rev. D 84, 024007 (2011). https://doi.org/10.1103/PhysRevD.84.024007. arXiv:gr-qc/1104.4802

    Article  ADS  Google Scholar 

  43. S.R. Shaymatov, B.J. Ahmedov, A.A. Abdujabbarov, Particle acceleration near a rotating black hole in a Randall-Sundrum brane with a cosmological constant. Phys. Rev. D 88, 024016 (2013). https://doi.org/10.1103/PhysRevD.88.024016

    Article  ADS  Google Scholar 

  44. O.B. Zaslavskii, Acceleration of particles by black holes–a general explanation. Class. Quantum Gravit. 28, 105010 (2011). https://doi.org/10.1088/0264-9381/28/10/105010. arXiv:gr-qc/1011.0167

    Article  ADS  MATH  Google Scholar 

  45. A.A. Grib, Y.V. Pavlov, On particle collisions in the gravitational field of the Kerr black hole. Astropart. Phys. 34, 581–586 (2011). https://doi.org/10.1016/j.astropartphys.2010.12.005. arXiv:gr-qc/1001.0756

    Article  ADS  Google Scholar 

  46. A.A. Grib, Y.V. Pavlov, On particle collisions near rotating black holes. Gravit. Cosmol. 17, 42–46 (2011). https://doi.org/10.1134/S0202289311010099. arXiv:gr-qc/1010.2052

    Article  ADS  MATH  Google Scholar 

  47. M. Patil, P.S. Joshi, Naked singularities as particle accelerators. Phys. Rev. D 82, 104049 (2010). https://doi.org/10.1103/PhysRevD.82.104049. arXiv:gr-qc/1011.5550

    Article  ADS  Google Scholar 

  48. M. Patil, P.S. Joshi, D. Malafarina, Naked singularities as particle accelerators. II. Phys. Rev. D 83, 064007 (2011). https://doi.org/10.1103/PhysRevD.83.064007. arXiv:gr-qc/1102.2030

    Article  ADS  Google Scholar 

  49. M. Patil, P.S. Joshi, High energy particle collisions in superspinning Kerr geometry. Phys. Rev. D 84, 104001 (2011). https://doi.org/10.1103/PhysRevD.84.104001. arXiv:gr-qc/1103.1083

    Article  ADS  Google Scholar 

  50. M. Patil, P. Joshi, Kerr naked singularities as particle accelerators. Class. Quantum Gravit. 28, 235012 (2011). https://doi.org/10.1088/0264-9381/28/23/235012. arXiv:gr-qc/1103.1082

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. T. Harada, M. Kimura, Collision of two general geodesic particles around a Kerr black hole. Phys. Rev. D 83, 084041 (2011). https://doi.org/10.1103/PhysRevD.83.084041. arXiv:gr-qc/1102.3316

    Article  ADS  Google Scholar 

  52. S. Shaymatov, B. Ahmedov, Z. Stuchlík, A. Abdujabbarov, Effect of an external magnetic field on particle acceleration by a rotating black hole surrounded with quintessential energy. Int. J. Mod. Phys. D 27, 1850088 (2018). https://doi.org/10.1142/S0218271818500888

    Article  ADS  MathSciNet  Google Scholar 

  53. T. Harada, M. Kimura, Collision of an object in the transition from adiabatic inspiral to plunge around a Kerr black hole. Phys. Rev. D 84, 124032 (2011). https://doi.org/10.1103/PhysRevD.84.124032. arXiv:gr-qc/1109.6722

    Article  ADS  Google Scholar 

  54. S. Shaymatov, D. Malafarina, B. Ahmedov, Effect of perfect fluid dark matter on particle motion around a static black hole immersed in an external magnetic field. Phys. Dark Universe 34, 100891 (2021). https://doi.org/10.1016/j.dark.2021.100891. arXiv:gr-qc/2004.06811

    Article  Google Scholar 

  55. S. Shaymatov, B. Narzilloev, A. Abdujabbarov, C. Bambi, Charged particle motion around a magnetized Reissner-Nordström black hole. Phys. Rev. D 103, 124066 (2021). https://doi.org/10.1103/PhysRevD.103.124066. arXiv:gr-qc/2105.00342

    Article  ADS  Google Scholar 

  56. A. Abdujabbarov, B. Ahmedov, B. Ahmedov, Energy extraction and particle acceleration around a rotating black hole in Hořava-Lifshitz gravity. Phys. Rev. D 84, 044044 (2011). https://doi.org/10.1103/PhysRevD.84.044044. arXiv:astro-ph.SR/1107.5389

    Article  ADS  Google Scholar 

  57. P.J. Mao, R. Li, L.Y. Jia, J.R. Ren, Acceleration of particles in Einstein-Maxwell-dilaton black holes. Chin. Phys. C 41, 065101 (2017). https://doi.org/10.1088/1674-1137/41/6/065101. arXiv:hep-th/1008.2660

    Article  ADS  Google Scholar 

  58. Y. Li, J. Yang, Y.L. Li, S.W. Wei, Y.X. Liu, Particle acceleration in Kerr-(anti-)de Sitter black hole backgrounds. Class. Quantum Gravit. 28, 225006 (2011). https://doi.org/10.1088/0264-9381/28/22/225006. arXiv:hep-th/1012.0748

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. M. Amir, S.G. Ghosh, Rotating Hayward’s regular black hole as particle accelerator. J. High Energy Phys. 2015, 15 (2015). https://doi.org/10.1007/JHEP07(2015)015. arXiv:gr-qc/1503.08553

    Article  Google Scholar 

  60. M. Khurshudyan, N.S. Mazhari, D. Momeni, R. Myrzakulov, M. Raza, Observational constraints on models of the universe with time variable gravitational and cosmological constants along MOG. Int. J. Theor. Phys. 54, 484–505 (2015). https://doi.org/10.1007/s10773-014-2242-2. arXiv:gr-qc/1403.0081

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Rayimbaev, P. Tadjimuratov, Can modified gravity silence radio-loud pulsars? Phys. Rev. D 102, 024019 (2020). https://doi.org/10.1103/PhysRevD.102.024019

    Article  ADS  MathSciNet  Google Scholar 

  62. J.W. Moffat, Black holes in modified gravity (MOG). Eur. Phys. J. C 75, 175 (2015). https://doi.org/10.1140/epjc/s10052-015-3405-x. arXiv:gr-qc/1412.5424

    Article  ADS  Google Scholar 

  63. B. Turimov, S. Hayitov, Black holes as a collider of high energy particles. arXiv e-prints 2023, [arXiv:gr-qc/2307.01919]. https://doi.org/10.48550/arXiv.2307.01919

Download references

Acknowledgements

This research was supported by the Grants F-FA-2021-510 from the Uzbekistan Ministry for Innovative Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobur Turimov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turimov, B., Shaymatov, S. & Hayitov, S. Collisions of particles near Kerr-MOG black holes. Eur. Phys. J. Plus 138, 1022 (2023). https://doi.org/10.1140/epjp/s13360-023-04618-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04618-6

Navigation