Skip to main content
Log in

Interactions of breathers and rogue wave for the coupled Lakshmanan–Porsezian–Daniel equation

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Interactions of nonlinear waves play a significant role in physical systems. In this work, we attain the interactions of breathers and rogue wave for the coupled Lakshmanan–Porsezian–Daniel equation. Through the Darboux transformation, we succeed the interactional solutions consisting of different types of breathers and rogue wave. In particular, it can be observed that distinct parameters \(a_1\), \(a_2\), \(\delta \) and \(\lambda _1\) make the interaction properties, structures and energy conversion of breathers and dramatically change. Moreover, we exhibit the striking dynamics of interactional solutions based on three-dimensional figures. These results are helpful for the study of nonlinear waves in coupled integrable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Google Scholar 

  2. Kharif, C., Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B 22, 603–634 (2003)

    MathSciNet  Google Scholar 

  3. Dematteis, G., Grafke, T., Onorato, M., Vanden-Eijnden, E.: Experimental evidence of hydrodynamic instantons: The universal route to rogue waves. Phys. Rev. X 9, 041057 (2019)

    Google Scholar 

  4. Chen, S.S., Tian, B., Tian, H.Y., Yang, D.Y.: \(N\)-fold generalized Darboux transformation and semiration solutions for the Gerdjikov–Ivanov equation for the Alfv\(\rm \acute{e}\)n waves in a plasma. Nonlinear Dyn. 108, 1561–1572 (2022)

    Google Scholar 

  5. Tao, Y.S., He, J.S.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)

    Google Scholar 

  6. Zhao, H.Q., Yuan, J.Y., Zhu, Z.N.: Integrable semi-discrete Kundu–Eckhaus equation: Darboux transformation, breather, rogue wave and continuous limit theory. J. Nonlinear Sci. 28, 43–68 (2018)

    MathSciNet  Google Scholar 

  7. Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K.: Dark solitons in Bose–Einstein condenstates. Phys. Rev. Lett. 83, 5198–5201 (1999)

    Google Scholar 

  8. Akhmediev, N.N., Eleonskii, V.M., Kulagin, N.E.: Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions. Zh. Eksp. Teor. Fiz. 89, 1542–1551 (1985)

    Google Scholar 

  9. Kuznetsov, E.A.: Solitons in a parametrically unstable plasma. Dokl. Akad. Nauk SSSR 236, 575–577 (1977)

    Google Scholar 

  10. Kawata, T., Inoue, H.: Inverse scattering method for the nonlinear evolution equations under nonvanishing conidtions. J. Phys. Soc. Jpn. 44, 1722–1729 (1978)

    Google Scholar 

  11. Ma, Y.C.: The perturbed plane-wave solutions of the cubic Schr\(\rm \ddot{o}\)dinger equation. Stud. Appl. Math. 60, 43–58 (1979)

    MathSciNet  Google Scholar 

  12. Dudley, M., Genty, G., Dias, F.: Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009)

    Google Scholar 

  13. Kibler, B., Fatome, J., Finot, C., Millot, G., Genty, G., Wetzel, B., Akhmediev, N., Dias, F., Dudley, J.M.: Observation of Kuznestov–Ma soliton dynamics in optical fibre. Sci. Rep. 2, 463 (2012)

    Google Scholar 

  14. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Google Scholar 

  15. Wang, W., Bu, L., Cheng, D., Ye, Y., Chen, S., Baronio, F.: Ultraslow Kuznetsov–Ma solitons and Akhmediev breathers in a cold three-state medium exposed to nanosecond optical pulses. OSA Contin. 4, 1488–1496 (2021)

    Google Scholar 

  16. Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schr\(\rm \ddot{o}\)dinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)

    Google Scholar 

  17. Li, X.L., Guo, R.: Solitons, breathers coexist with rogue waves for a higher-order coupled nonlinear Schr\(\rm \ddot{o}\)dinger system. Commun. Nonlinear Sci. Numer. Simul. 108, 106244 (2022)

    Google Scholar 

  18. Ding, C.C., Gao, Y.T., Yu, X., Liu, F.Y., Wu, X.H.: \(N\)-fold generalized Darboux transformation and breather-rogue waves on the constant/periodic background for the generalized mixed nonlinear Schr\(\rm \ddot{o}\)dinger equation. Nonlinear Dyn. 109, 989–1004 (2022)

    Google Scholar 

  19. Ma, Y.L., Li, B.Q.: Hybrid rogue wave and breather solutions for a complex mKdV equation in few-cycle ultra-short pulse optics. Eur. Phys. J. Plus 137, 861 (2022)

    Google Scholar 

  20. Xu, T., Chen, G.Y.: Semirational solutions to the coupled Fokas–Lenells equations. Nonlinear Dyn. 95, 87–99 (2019)

    Google Scholar 

  21. Du, Z., Guo, C.M., Guo, Q., Yuan, Y.Q.: Hybrid structures of rogue waves and breathers for the coupled Hirota system with negative coherent coupling. Phys. Scr. 97, 075205 (2022)

    Google Scholar 

  22. Ma, W.X.: Bilinear equations and resonant solutions characterized by Bell polynomials. Rep. Math. Phys. 72, 41–56 (2013)

    MathSciNet  Google Scholar 

  23. Ma, W.X.: Trilinear equations, Bell polynomials, and resonant solutions. Front. Math. China. 8, 1139–1156 (2013)

    MathSciNet  Google Scholar 

  24. Rao, J.G., Porsezian, K., He, J.S.: Semi-rational solutions of the third-type Davey–Stewartson equation. Chaos 27, 083115 (2017)

    MathSciNet  Google Scholar 

  25. Wang, R., Zhang, Y., Chen, X.T., Ye, R.S.: The rational and semi-rational solutions to the Hirota Maccari system. Nonlinear Dyn. 100, 2767–2778 (2020)

    Google Scholar 

  26. Peng, W.Q., Tian, S.F., Zhang, T.T.: Rational and semi-rational solutions of a nonlocal (2+1)-dimensional nonlinear Schr\(\rm \ddot{o}\)dinger equation. Math. Methods Appl. Sci. 42, 6865–6877 (2019)

    MathSciNet  Google Scholar 

  27. Guo, B.L., Ling, L.M., Liu, Q.P., Wu, C.F.: Nonlinear Schr\(\rm \ddot{o}\)dinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Google Scholar 

  28. Zhang, Y., Yang, J.W., Chow, K.W., Wu, C.F.: Solitons, breathers and rogue waves for the coupled Fokas–Lenells system via Darboux transformation. Nonlinear Anal. RWA 33, 237–252 (2017)

    MathSciNet  Google Scholar 

  29. Li, B.Q., Ma, Y.L.: Interaction properties between rogue wave and breathers to the Manakov system arising from stationary self-focusing electromagnetic systems. Chaos Solitons Fract. 156, 111832 (2022)

    MathSciNet  Google Scholar 

  30. Feng, B.F., Ling, L.M., Takahashi, D.A.: Multi-breather and high-order rogue waves for the nonlinear Schr\(\rm \ddot{o}\)dinger equation on the elliptic function background. Stud. Appl. Math. 144, 46–101 (2020)

    MathSciNet  Google Scholar 

  31. Lou, Y., Zhang, Y., Ye, R.S., Li, M.: Solitons and dynamics for the integrable nonlocal pair-transition-coupled nonlinear Schr\(\rm \ddot{o}\)dinger equation. Appl. Math. Comput. 409, 126417 (2021)

    Google Scholar 

  32. He, J.S., Xu, S.W., Porsezian, K.: New types of rogue wave in an erbium-doped fibre system. J. Phys. Soc. Jpn. 81, 033002 (2012)

    Google Scholar 

  33. Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of peregrine solitons in a multicomponent plasma with negative lons. Phys. Rev. Lett. 107, 255005 (2011)

    Google Scholar 

  34. Setnflo, L., Marklund, M.: Rogue waves in the atmosphere. J. Plasma Phys. 76, 293–295 (2010)

    Google Scholar 

  35. Sun, W.R., Liu, L., Wang, L.: Dynamics of fundamental solitons and rogue waves on the mixed backgrounds. Eur. Phys. J. Plus 136, 383 (2021)

    Google Scholar 

  36. Degasperis, A., Lombardo, S.: Rational solitons of wave resonant-interaction models. Phys. Rev. E 88, 052914 (2013)

    Google Scholar 

  37. Mu, G., Qin, Z.Y., Grimshaw, R.: Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schr\(\rm \ddot{o}\)dinger equation. SIAM J. Appl. Math. 75, 1–20 (2015)

    MathSciNet  Google Scholar 

  38. Liu, C., Chen, S.C., Yao, X.K., Akhmediev, N.: Modulation instability and non-degenerate Akhmediev breathers of Manakov equations. Chin. Phys. Lett. 39, 094201 (2022)

    Google Scholar 

  39. Che, W.J., Chen, S.C., Liu, C., Zhao, L.C., Akhmediev, N.: Nondegenerate Kuznetsov-Ma solitons of Manakov equations and their physical spectra. Phys. Rev. A 105, 043526 (2022)

    MathSciNet  Google Scholar 

  40. Liu, C., Chen, S.C., Yao, X.K., Akhmediev, N.: Non-degenerate multi-rogue waves and easy ways of their excitation. Physica D 433, 133192 (2022)

    Google Scholar 

  41. Zhang, X.E., Zhang, Y.: Non-degenerate high-order solitons of the coupled nonlinear Schr\(\rm \ddot{o}\)dinger equation. Appl. Math. Lett. 136, 108465 (2023)

    Google Scholar 

  42. Chen, S.C., Liu, C.: Hidden Akhmediev breathers and vector modulation instability in the defocusing regime. Physica D 438, 133364 (2022)

    MathSciNet  Google Scholar 

  43. Che, W.J., Liu, C., Akhmediev, N.: Fundamental and second-order dark soliton solutions of two-and three-component Manakov equations in the defocusing regime. Phys. Rev. E 107, 054206 (2023)

    MathSciNet  Google Scholar 

  44. Chen, S.C., Liu, C., Akhmediev, N.: Higher-order modulation instability and multi-Akhmediev breathers of Manakov equations: frequency jumps over the stable gaps between the instability bands. Phys. Rev. A 107, 063507 (2023)

    Google Scholar 

  45. Liu, C., Chen, S.C., Akhmediev, N.: Fundamental and second-order superregular breathers in vector fields. Phys. Rev. Lett. 132, 027201 (2024)

    MathSciNet  Google Scholar 

  46. Niu, J.X., Guo, R.: The zero-phase solution and rarefaction wave structures for the higher-order Chen-Lee-Liu equation. Appl. Math. Lett. 140, 108568 (2023)

    MathSciNet  Google Scholar 

  47. Zou, Z.F., Guo, R.: The Riemann–Hilbert approach for the higher-order Gerdjikov–Ivanov equation, soliton interactions and position shift. Commun. Nonlinear Sci. Numer. Simul. 124, 107316 (2023)

    MathSciNet  Google Scholar 

  48. Zhang, Y., Hao, H.Q., Guo, R.: Periodic solutions and Whitham modulation equations for the Lakshmanan–Porsezian–Daniel equation. Phys. Lett. A 450, 128369 (2022)

    MathSciNet  Google Scholar 

  49. Liu, D.Y., Tian, B., Xie, X.Y.: Bound-state solutions, Lax pair and conservation laws for the coupled higher-order nonlinear Schr\(\rm \ddot{o}\)dinger equations in the birefringent or two-mode fiber. Mod. Phys. Lett. B 31, 1750067 (2017)

    Google Scholar 

  50. Xu, T., He, G.L.: Higher-order interactional solutions and rogue waves pairs for the coupled Lakshmanan–Porsezian-Daniel equations. Nonlinear Dyn. 98, 1731–1744 (2019)

  51. Wei, H.Y., Fan, E.G., Guo, H.D.: Riemann-Hilbert approach and nonlinear dynamics of the coupled higher-order nonlinear Schr\(\rm \ddot{o}\)dinger equation in the birefringent or two-mode fiber. Nonlinear Dyn. 102, 649–660 (2021)

    Google Scholar 

  52. Li, X.L., Guo, R.: Interactions of localized waves structures on periodic background for the coupled Lakshmanan–Porsezian–Daniel equations in birefringent optical fibers. Ann. Phys. (Berlin) 535, 2200472 (2023)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11371326, No. 11975145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lou.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Y. Interactions of breathers and rogue wave for the coupled Lakshmanan–Porsezian–Daniel equation. Nonlinear Dyn 112, 8453–8463 (2024). https://doi.org/10.1007/s11071-024-09495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09495-x

Keywords

Navigation