Skip to main content
Log in

Impact of higher-order nonlinear saturation effects on modulation instability in three-core oppositely directed coupler with two negative index material channels

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we intend to carry out a detail investigation on influence of higher-order effects on the modulation instability scenario in the three-core triangular (NIM-PIM-NIM) oppositely directed coupler. Upon arriving at the expression for instability gain employing linear stability analysis, particular attention is paid to reveal the impact of stimulated Raman effect and the self-frequency shift over the instability gain and the side band formation in both normal and anomalous instances. The study brings out a novel result that a regime of instability gain still exists in normal group-velocity dispersion even though the modulational frequency (\(\Omega\)) is zero. However, the benefits in instability at \(\Omega\) = 0 are zero when the dispersion is anomalous. The self-frequency shift, stimulated Raman effect, and saturable nonlinearity exhibit novel effects of introducing new side lobes and merging the existing side bands paving technique to generate solitary wave/solitons or very brief pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that has been used is confidential.

References

  1. O. Kimmoun, H.C. Hsu, B. Kibler, A. Chabchoub, Nonconservative higher-order hydrodynamics modulation instability. Phys. Rev. E 96(2), 022219 (2019)

    Article  ADS  Google Scholar 

  2. N.A. Chowdhury, M.M. Hasan, A. Mannan, A.A. Mamun, Nucleus-acoustic envelope solitons and their modulational instability in a degenerate quantum plasma system. Vacuum 147, 31–37 (2018)

    Article  ADS  Google Scholar 

  3. I. Ferrier-Barbut, M. Wenzel, M. Schmitt, F. Bottcher, T. Pfau, Onset of a modulational instability in trapped dipolar Bose-Einstein condensates. Phys. Rev. A 97(1), 011604 (2018)

    Article  ADS  Google Scholar 

  4. X. Zhong, K. Cheng, K.S. Chiang, Modulation instability with arbitrarily high perturbation frequencies in metamaterials with nonlinear dispersion and saturable nonlinearity. J. Opt. Soc. Am. B 31(7), 1484–1493 (2014)

    Article  ADS  Google Scholar 

  5. A. Canabarro, B. Santos, B. de Lima Bernardo, Modulation instability in non instantaneous Kerr media with walk-off and cross-phase modulation for mixed group-velocity-dispersion regimes. Phys. Rev. A 93(2), 023834 (2016)

    Article  ADS  Google Scholar 

  6. B. Kibler, F. Amrani, P. Morin, A. Kudlinski, Cross-phase-modulation-instability band gap in a birefringence-engineered photonic-crystal fiber. Phys. Rev. A 93(1), 013857 (2016)

    Article  ADS  Google Scholar 

  7. M.R.S. Tchio, S. Abdoulkary, A. Mohamadou, Modulation instability induced by high-order dispersion to a coupled nonlinear Schrödinger equation in a single-mode optical fiber with Kerr nonlinearity. Phys. Scr. 94(3), 035207 (2019)

    Article  ADS  Google Scholar 

  8. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, Burlington, 2007)

    MATH  Google Scholar 

  9. A.E. Kraych, P. Suret, S. Randoux, Nonlinear evolution of the locally induced modulational instability in fiber optics. Phys. Rev. Lett. 122(5), 054101 (2019)

    Article  ADS  Google Scholar 

  10. G.D. Shao, X. Hu, J. Guo, Y.F. Song, L.M. Zhao, D.Y. Shen, D.Y. Tang, Cavity-assisted modulation instability lasing of a fiber ring laser. Appl. Phys. B-Lasers O. 125(1), 5 (2019)

    Article  ADS  Google Scholar 

  11. A. Bendahmane, A. Mussot, A. Kudlinski, P. Szriftgiser, M. Conforti, S. Wabnitz, S. Trillo, Optical frequency conversion in the nonlinear stage of modulation instability. Opt. Express 23(24), 30861–30871 (2015)

    Article  ADS  Google Scholar 

  12. D.Y. Tang, J. Guo, Y.F. Song, L. Li, L.M. Zhao, D.Y. Shen, GHz pulse train generation in fiber lasers by cavity induced modulation instability. Opt. fiber Technol. 20(6), 610–614 (2014)

    Article  ADS  Google Scholar 

  13. X.M. Liu, Broad and tunable multi wavelength fiber laser at the assistance of modulation-instabilityassisted four-wave mixing. Laser Phys. 20(4), 842–846 (2010)

    Article  ADS  Google Scholar 

  14. J. Fatome, S. Pitois, G. Millot, Measurement of nonlinear and chromatic dispersion parameters of optical fibers using modulation instability. Opt. Fiber Technol. 12(3), 243–250 (2006)

    Article  ADS  Google Scholar 

  15. C. Lei, A. Jin, R. Song, Z. Chen, J. Hou, Theoretical and experimental research of supercontinuumgeneration in an ytterbium-doped fiber amplifier. Opt. Express 24(9), 9237–9250 (2016)

    Article  ADS  Google Scholar 

  16. J.R. Ott, M. Heuck, C. Agger, P.D. Rasmussen, O. Bang, Label-free and selective nonlinear fiber optical bio-sensing. Opt. Express 16(25), 20834–20847 (2008)

    Article  ADS  Google Scholar 

  17. M.N. Islam, S.P. Dijaili, J.P. Gordon, Modulation-instability-based fiber interferometer switch near 1.5 μm. Opt. Lett. 13(6), 518–520 (1988)

    Article  ADS  Google Scholar 

  18. X. Han, H.F. Xiao, Z.L. Liu, T. Zhao, H. Jia, J.H. Yang, B.J. Eggleton, Y.H. Tian, Reconfigurableon-chip mode exchange for mode-division multiplexing optical networks. J. Lightwave Technol. 37(3), 1008–1013 (2019)

    Article  ADS  Google Scholar 

  19. Y. Fazea, V. Mezhuyev, Selective mode excitation techniques for mode-division multiplexing: a critical review. Opt. Fiber Technol. 45, 280–288 (2018)

    Article  ADS  Google Scholar 

  20. T. Umezawa, T. Sakamoto, A. Kanno, N. Yamamoto, T. Kawanishi, High speed 2-D photodetector array for space and mode-division multiplexing fiber communications. J. Lightwave Technol. 36(17), 3684–3692 (2018)

    Article  ADS  Google Scholar 

  21. J.X. Li, C.K. Cai, J.B. Du, S.L. Jiang, L. Ma, L.L. Wang, L. Zhu, A.D. Wang, M.J. Li, H. Chen, Ultra-low-noise mode-division multiplexed WDM transmission over 100-km FMF based on a second-order few-mode Raman amplifier. J. Lightwave Technol. 36(16), 3254–3260 (2018)

    Article  ADS  Google Scholar 

  22. L.G. Wright, D.N. Christodoulides, F.W. Wise, Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photonics 9(5), 306–310 (2015)

    Article  ADS  Google Scholar 

  23. L.G. Wright, Z.M. Ziegler, P.M.Z.M. Lushnikov, Z. Zhu, M.A. Eftekhar, Multimode nonlinear fiberoptics: massively parallel numerical solver, tutorial, and outlook. IEEE J. Sel. Top. Quant. 24(3), 5100516 (2018)

    Article  Google Scholar 

  24. U. Tegin, B. Ortac, Spatialtemporal instability of femtosecond pulses in graded-index multimode fibers. IEEE Photonics Technol. Lett. 29(24), 2195–2198 (2017)

    Article  ADS  Google Scholar 

  25. P. Balla, S. Buchand, G.P. Agrawal, Effect of Raman scattering on soliton interactions in optical fibers. J. Opt. Soc. Am. B 34(6), 1247–1254 (2017)

    Article  ADS  Google Scholar 

  26. M. Conforti, C.M. Arabi, A. Mussot, A. Kudlinski, Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers. Opt. Lett. 42(19), 4004–4007 (2017)

    Article  ADS  Google Scholar 

  27. S. Buch, G.P. Agrawal, Intermodal soliton interaction in nearly degenerate modes of a multimode fiber. J. Opt. Soc. Am. B 33(11), 2217–2224 (2016)

    Article  ADS  Google Scholar 

  28. S. Perret, G. Fanjoux, L. Bigot, G. Millot, J.M. Dudley, T. Sylvestre, Supercontinuum generation by intermodal four-wave mixing in a step-index few-mode fibre. Apl. Photonics 49(2), 022905 (2018)

    Article  Google Scholar 

  29. R. Dupiol, A. Bendahmane, K. Krupa, J. Fatome, A. Tonello, M. Fabert, V. Couderc, S. Wabnitz, G. Millot, Intermodal modulational instability in graded-index multimode optical fibers. Opt. Lett. 42(17), 3419–3422 (2017)

    Article  ADS  Google Scholar 

  30. M. Guasoni, Generalized modulational instability in multimode fibers: wideband multimode parametric amplification. Phys. Rev. A 92(3), 033849 (2015)

    Article  ADS  Google Scholar 

  31. B. Abdelkrim, K. Katarzyna, T. Alessandro, Seeded intermodal four-wave mixing in a highly multimode fiber. J. Opt. Soc. Am. B 35(2), 295–301 (2018)

    Article  Google Scholar 

  32. J.H. Li, K.S. Chiang, K.W. Chow, Modulation instabilities in two-core optical fibers. J. Opt. Soc. Am. B 28(7), 1693–1701 (2011)

    Article  ADS  Google Scholar 

  33. J.H. Li, K.S. Chiang, B.A. Malomed, K.W. Chow, Modulation instabilities in birefringent two-core optical fibres. J. Phys. B: Atomic, Molecul. Optic. Phys. 45(16), 165404 (2012)

    Article  ADS  Google Scholar 

  34. J.H. Li, H. Zhou, K.S. Chiang, S.R. Xiao, Modulation instabilities in equilateral three-core optical fibers. J. Opt. Soc. Am. B 33(11), 2357–2367 (2016)

    Article  ADS  Google Scholar 

  35. J.H. Li, K.S. Chiang, C.R. Li, Modulation instability in collinear three-core optical fibers. J. Opt. Soc. Am. B 34(12), 2467–2477 (2017)

    Article  ADS  Google Scholar 

  36. A. Alim, M. Youssoufa, A. Mohamadou, Effects of higher-order nonlinear dispersions on modulational instability in a three-core coupler with negative index material channel and saturable nonlinearity. Optik 149, 5–21 (2017)

    Article  ADS  Google Scholar 

  37. A.K.S. Ali, K. Nithyanandan, K. Porsezian, Theoretical investigation of modulation instability in a threecore coupler with negative index material channel. Phys. Lett. A 379(3), 223–229 (2015)

    Article  ADS  Google Scholar 

  38. A.K.S. Ali, K. Nithyanandan, K. Porsezian, A.I. Maimistov, Modulation instability in a triangular three-core coupler with a negative-index material channel. J. Opt. 18(3), 035102 (2016)

    Article  ADS  Google Scholar 

  39. Y.J. Xiang, S.C. Wen, X.Y. Dai, D.Y. Fan, Modulation instability in nonlinear oppositely directed coupler with a negative-index metamaterial channel. Phys. Rev. E 82(5), 056605 (2010)

    Article  ADS  Google Scholar 

  40. P.H. Tatsing, A. Mohamadou, C. Bouri, C.G.L. Tiofack, T.C. Kofane, Modulation instability in nonlinear positive-negative index couplers with saturable nonlinearity. J. Opt. Soc. Am. B 29(12), 3218–3225 (2012)

    Article  ADS  Google Scholar 

  41. K. Nithyanandan, R.V.J. Raja, K. Porsezian, Modulational instability in a twin-core fiber with the effect of saturable nonlinear response and coupling coefficient dispersion. Phys. Rev. A 87(4), 043805 (2013)

    Article  ADS  Google Scholar 

  42. A. Mohamadou, P.H. Tatsing, C.G.L. Tiofack, C.B. Tabi, T.C. Kofane, Effects of higher order nonlinearities on modulational instability in nonlinear oppositely directed coupler. J. Mod. Opt. 61(20), 1670–1678 (2014)

    Article  ADS  Google Scholar 

  43. D. Djidna, G. Betchewe, A. Alim, A. Mohamadou, Cross-phase modulation instability in an elliptical birefringent positive-negative index coupler with self-steepening and intrapulse Raman Scattering effects. Optik 185, 726–739 (2019)

    Article  ADS  Google Scholar 

  44. E.O. Alves, W.B. Cardoso, A.T. Avelar, Modulation instability in a nonlinear oppositely directed coupler with saturable nonlinearities and high-order effects. J. Opt. Soc. Am. B 33(6), 1134–1142 (2016)

    Article  ADS  Google Scholar 

  45. A.K. Shafeeque Ali, K. Porsezian, T. Uthayakumar, Influence of self-steepening and intrapulse Raman scattering on modulation instability in oppositely directed coupler. Phys. Rev. E 90(4), 042910 (2014)

    Article  ADS  Google Scholar 

  46. J.G. Zhang, X.Y. Dai, L.F. Zhang, Y.J. Xiang, Y.F. Li, Modulation instability in the oppositely directed coupler with a quadratic nonlinearity. J. Opt. Soc. Am. B 32(1), 1–8 (2015)

    Article  ADS  Google Scholar 

  47. K. Porsezian, A.K.S. Ali, K. Nithyanandan, A theoretical study on threshold conditions of modulation instability in oppositely directly couplers. J. Opt. 18(12), 125502 (2016)

    Article  ADS  Google Scholar 

  48. G.P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, Burlington, 2008)

    Google Scholar 

  49. P. Mohanraj, R. Sivakumar, Role of higher order nonlinearities in the instability spectra of two core oppositely directed saturated coupler. Optik 192, 162904 (2019)

    Article  ADS  Google Scholar 

  50. P. Mohanraj, R. Sivakumar, A. Joseph, Impact of higher order dispersions and nonlinearities on instability criterion of oppositely directed coupler in the presence of negative index material channel. Optik 255, 168705 (2022)

    Article  ADS  Google Scholar 

  51. P. Mohanraj, R. Sivakumar, Saturable higher nonlinearity effects on the modulational instabilities in three-core triangular configuration couplers. J. Opt. 23, 045502 (2021)

    Article  ADS  Google Scholar 

  52. P. Mohanraj, R. Sivakumar, A.M. Arulanandham, K.V. Gunavathy, Study on modulational instability in three-core nonlinear directional saturated coupler with septic nonlinearity. Optic. Quantum Electron. 54(6), 386 (2022)

    Article  Google Scholar 

  53. P. Mohanraj, R. Sivakumar, A.M. Arulanandham, S. Vinoth, Impact of saturation on cross-phase instability in birefringent oppositely directed coupler with higher-order nonlinearities. Indian J. Phys. 96(12), 3613–3626 (2022)

    Article  ADS  Google Scholar 

  54. P. Mohanraj, R. Sivakumar, A.M. Arulanantham, M. Vijayakumar, The role of septic saturation on the cross-phase instability in two-core birefringent oppositely directed PIM-NIM coupler. Phys. Lett. A. 450, 128366 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  55. I.R. Litchinitser, N.M. Gabitov, A.I. Maimistov, Optical bistability in a nonlinear optical coupler with a negative index channel. Phys. Rev. Lett. 99, 113902 (2007)

    Article  ADS  Google Scholar 

  56. Z. Xian-Qiong, X. An-Ping, Generation of time-dependent ultra-short optical pulse trains in the presence of self-steepening effect. Chinese Phys. B. 18(2), 624 (2009)

    Article  ADS  Google Scholar 

  57. X. Yuanjiang, W. Shuangchun, D. Xiaoyu, F. Diayuan, Modulation instability in nonlinear oppositely directed coupler with a negative-index meta material channel. Phy. Rev. E 82, 056605 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

PM expresses gratitude to the UGC for the financial support under the RGNF initiative. One of the authors, RS, would like to recognise DST in part for the FIST money provided by order SR/FST/PSII-021/2009 dated 13 August 2010. Using this money, a straightforward computer cluster facility was constructed. This essay was created with Prof. K. Porsezian’s love and support in memory of one of the co-authors who passed away recently.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mohanraj.

Ethics declarations

Conflict of interest

The sharing of data is not relevant because no datasets were produced or examined for this subject.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanraj, P., Sivakumar, R., Joseph, A. et al. Impact of higher-order nonlinear saturation effects on modulation instability in three-core oppositely directed coupler with two negative index material channels. Eur. Phys. J. Plus 138, 351 (2023). https://doi.org/10.1140/epjp/s13360-023-03960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03960-z

Navigation