Skip to main content

Advertisement

Log in

Energy flow controls synchronization in a network coupled with memristive synapses

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

External stimulus and noisy disturbance can inject energy into nonlinear systems, and the energy propagation between different branch circuits is regulated to control the oscillatory states completely. In this work, memristive synapse is activated under energy diversity and the energy flow is guided to control the coupling channels adaptively between Chua circuits (in presenting periodic and/or chaotic states). The field energy in each nonlinear circuit is described by an equivalent Hamilton energy function and adaptive mechanism for field coupling is explained. For identical Chaotic Chua circuits, complete synchronization is controlled under energy balance. Transient chaos occurs in the Chua systems when the memristive parameter for coupling channel is below a saturation value, and then chaos is suppressed to present synchronous oscillation with stronger coupling intensity. In a chain network composed of Chua circuits, local energy balance is helpful to develop regular spatial patterns. Applying distinct diversity for initials will induce large diversity in energy for all nodes, the memristive channel can increase its parameter for reaching a higher value beyond the threshold, and a higher synchronization factor is obtained. These results indicate that local energy balance controls the collective behaviors of nonlinear oscillators and energy flow can be guided to control the synchronization stability in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig.12
Fig.13
Fig.14

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request. This manuscript has associated data in a data repository. [Authors’ comment: Data used in this work are obtained numerically by using the fourth order Runge-Kutta algorithm.]

References

  1. A.S. Elwakil, M.P. Kennedy, Generic RC realizations of Chua’s circuit. Int. J. Bifurcat. Chaos 10, 1981–1985 (2000)

    Article  Google Scholar 

  2. B. Chen, Q. Xu, M. Chen et al., Initial-condition-switched boosting extreme multistability and mechanism analysis in a memcapacitive oscillator. Front. Inform. Technol. Electr. Eng. 22, 1517–1531 (2021)

    Article  Google Scholar 

  3. X.L. Ye, X.Y. Wang, S. Gao et al., A new chaotic circuit with multiple memristors and its application in image encryption. Nonlinear Dyn. 99, 1489–1506 (2020)

    Article  Google Scholar 

  4. Y.Y. Yuan, H. Yang, F. Han et al., Traveling chimera states in locally coupled memristive Hindmarsh-Rose neuronal networks and circuit simulation. Sci. China Technol. Sci. 65, 1445–1455 (2022)

    Article  ADS  Google Scholar 

  5. Z.T. Njitacke, J. Kengne, A.N. Negou, Dynamical analysis and electronic circuit realization of an equilibrium free 3D chaotic system with a large number of coexisting attractors. Optik 130, 356–364 (2017)

    Article  ADS  Google Scholar 

  6. A.S.T. Kammogne, M.N. Kountchou, R. Kengne et al., Polynomial robust observer implementation based passive synchronization of nonlinear fractional-order systems with structural disturbances. Front. Inform. Technol. Electr. Eng. 21, 1369–1386 (2020)

    Article  Google Scholar 

  7. S. Takougang Kingni, K. Rajagopal, S. Çiçek et al., Dynamic analysis, FPGA implementation, and cryptographic application of an autonomous 5D chaotic system with offset boosting. Front. Inform. Technol. Electr. Eng. 21, 950–961 (2020)

    Article  Google Scholar 

  8. R. Kiliç, M. Alçi, U. Çam et al., Improved realization of mixed-mode chaotic circuit. Int. J. Bifurcat. Chaos 12(6), 1429–1435 (2002)

    Article  Google Scholar 

  9. Y. Guo, Z. Yao, Y. Xu et al., Control the stability in chaotic circuit coupled by memristor in different branch circuits. AEU-Int. J. Electr. Commun. 145, 154074 (2022)

    Article  Google Scholar 

  10. K. Murali, M. Lakshmanan, L.O. Chua, The simplest dissipative nonautonomous chaotic circuit. IEEE Trans. Circ. Syst. I: Fund. Theory Appl. 41, 462–463 (1994)

    Article  MATH  Google Scholar 

  11. L. Wang, Y. Zhang, Y. Shu, Analysis on a nonlinear chaos dynamical system. J. Zhejiang Univ. (Sci. Edn.) 48, 550–556 (2021)

    Google Scholar 

  12. H. Wang, G. Dong, New dynamics coined in a 4-D quadratic autonomous hyper-chaotic system. Appl. Math. Comput. 346, 272–286 (2019)

    MathSciNet  MATH  Google Scholar 

  13. F.S. Dias, L.F. Mello, J.G. Zhang, Nonlinear analysis in a Lorenz-like system. Nonlin. Anal. Real World Appl. 11, 3491–3500 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Boeing, Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction. Systems 4, 37 (2016)

    Article  Google Scholar 

  15. E.E. Mahmoud, P. Trikha, L.S. Jahanzaib et al., Dynamical analysis and chaos control of the fractional chaotic ecological model. Chaos, Solit. Fract. 141, 110348 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Wang, J. Tang, J. Ma, Minireview on signal exchange between nonlinear circuits and neurons via field coupling. Eur. Phys. J. Special Topics 228, 1907–1924 (2019)

    Article  ADS  Google Scholar 

  17. H. Gao, Y. Zhang, S. Liang et al., A new chaotic algorithm for image encryption. Chaos, Solit. Fract. 29, 393–399 (2006)

    Article  ADS  MATH  Google Scholar 

  18. N. Singh, A. Sinha, Chaos-based secure communication system using logistic map. Opt. Lasers Eng. 48, 398–404 (2010)

    Article  Google Scholar 

  19. B. Wang, X. Zhang, X. Dong, Novel secure communication based on chaos synchronization. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101, 1132–1135 (2018)

    Article  ADS  Google Scholar 

  20. M. Babaei, A novel text and image encryption method based on chaos theory and DNA computing. Nat. Comput. 12, 101–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Arab, M.J. Rostami, B. Ghavami, An image encryption method based on chaos system and AES algorithm. J. Supercomput. 75, 6663–6682 (2019)

    Article  Google Scholar 

  22. K. Kaneko, Spatiotemporal chaos in one-and two-dimensional coupled map lattices. Physica D 37, 60–82 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. N.T. Ouellette, J.P. Gollub, Curvature fields, topology, and the dynamics of spatiotemporal chaos. Phys. Rev. Lett. 99, 194502 (2007)

    Article  ADS  Google Scholar 

  24. G. Hu, Y. Zhang, H.A. Cerdeira et al., From low-dimensional synchronous chaos to high-dimensional desynchronous spatiotemporal chaos in coupled systems. Phys. Rev. Lett. 85, 3377 (2000)

    Article  ADS  Google Scholar 

  25. M. Wang, X. Wang, T. Zhao et al., Spatiotemporal chaos in improved cross coupled map lattice and its application in a bit-level image encryption scheme. Inf. Sci. 544, 1–24 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Y. Zhang, X. Wang, L. Liu et al., Spatiotemporal chaos of fractional order logistic equation in nonlinear coupled lattices. Commun. Nonlin. Sci. Numer. Simul. 52, 52–61 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Xu, Z. Yao, A. Hobiny et al., Differential coupling contributes to synchronization via a capacitor connection between chaotic circuits. Front. Inform. Technol. Electr. Eng. 20, 571–583 (2019)

    Article  Google Scholar 

  28. M. Ge, Y. Jia, Y. Xu et al., Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh-Rose neural network. Appl. Math. Comput. 352, 136–145 (2019)

    MathSciNet  MATH  Google Scholar 

  29. L. Zhang, X. An, J. Zhang, Field coupling-induced synchronization of a functional neuron with magnetic field perception. Phys. Scr. 98, 045203 (2023)

    Article  ADS  Google Scholar 

  30. X. An, L. Xiong, L. Zhang et al., Synchronization control of field-coupled neurons with distributed time delays. Eur. Phys. J. Plus 137(12), 1362 (2022)

    Article  Google Scholar 

  31. M. Lv, J. Ma, Y.G. Yao et al., Synchronization and wave propagation in neuronal network under field coupling. Sci. China Technol. Sci. 62, 448–457 (2019)

    Article  ADS  Google Scholar 

  32. Y. Zhang, C.N. Wang, J. Tang et al., Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. 63, 2328–2338 (2020)

    Article  ADS  Google Scholar 

  33. K. Lian, X. Zhou, W. Liu et al., Antiphase synchronization and central symmetrical antiphase synchronization in magnetic field coupled circuits. Nonlin. Dyn. 99, 3217–3229 (2020)

    Article  Google Scholar 

  34. A.G. Korotkov, A.O. Kazakov, T.A. Levanova, Effects of memristor-based coupling in the ensemble of FitzHugh-Nagumo elements. Eur. Phys. J. Special Topics 228, 2325–2337 (2019)

    Article  ADS  Google Scholar 

  35. T. Remi, P.A. Subha, K. Usha, Collective dynamics of neural network with distance dependent field coupling. Commun. Nonlin. Sci. Numer. Simul. 110, 106390 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Zhou, X. Zhang, X. Hu et al., Energy balance between two thermosensitive circuits under field coupling. Nonlin. Dyn. 110, 1879–1895 (2022)

    Article  Google Scholar 

  37. Y. Liu, G. Ren, P. Zhou et al., Synchronization in networks of initially independent dynamical systems. Phys. A 520, 370–380 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. B. Bao, Q. Yang, D. Zhu et al., Initial-induced coexisting and synchronous firing activities in memristor synapse-coupled Morris-Lecar bi-neuron network. Nonlin. Dyn. 99, 2339–2354 (2020)

    Article  Google Scholar 

  39. M. Chen, Y. Feng, H. Bao et al., State variable mapping method for studying initial-dependent dynamics in memristive hyper-jerk system with line equilibrium. Chaos, Solit. Fractals 115, 313–324 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Chen, D. Zhou, Y. Shang, A new observer-based synchronization scheme for private communication. Chaos, Solitons Fractals 24, 1025–1030 (2005)

    Article  ADS  MATH  Google Scholar 

  41. S. Bowong, F.M.M. Kakmeni, H. Fotsin, A new adaptive observer-based synchronization scheme for private communication. Phys. Lett. A 355, 193–201 (2006)

    Article  ADS  Google Scholar 

  42. G. Grassi, D.A. Miller, Theory and experimental realization of observer-based discrete-time hyperchaos synchronization. IEEE Trans. Circ. Sys. I(49), 373–378 (2002)

    Article  Google Scholar 

  43. B.B. Sharma, I.N. Kar, Observer-based synchronization scheme for a class of chaotic systems using contraction theory. Nonlin. Dyn. 63, 429–445 (2011)

    Article  MathSciNet  Google Scholar 

  44. P. Selvaraj, R. Sakthivel, C.K. Ahn, Observer-based synchronization of complex dynamical networks under actuator saturation and probabilistic faults. IEEE Trans. Sys., Man, Cybern.: Sys. 49, 1516–1526 (2018)

    Article  Google Scholar 

  45. A. Jajarmi, M. Hajipour, D. Baleanu, New aspects of the adaptive synchronization and hyperchaos suppression of a financial model. Chaos, Solitons Fractals 99, 285–296 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. S. Sajjadi, D. Baleanu, A. Jajarmi et al., A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos, Solitons Fractals 138, 109919 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. H. Adloo, M. Roopaei, Review article on adaptive synchronization of chaotic systems with unknown parameters. Nonlin. Dyn. 65, 141–159 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Vaidyanathan, Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. Eur. Phys. J. Special Topics 223, 1519–1529 (2014)

    Article  ADS  Google Scholar 

  49. S.C. Jeong, D.H. Ji, J.H. Park et al., Adaptive synchronization for uncertain chaotic neural networks with mixed time delays using fuzzy disturbance observer. Appl. Math. Comput. 219, 5984–5995 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Y. Xie, Z. Yao, J. Ma, Phase synchronization and energy balance between neurons. Front. Inform. Technol. Electr. Eng. 23, 1407–1420 (2022)

    Article  Google Scholar 

  51. X.W. Ma, Y. Xu, Taming the hybrid synapse under energy balance between neurons. Chaos, Solitons Fractals 159, 112149 (2022)

    Article  MathSciNet  Google Scholar 

  52. Y. Wang, G. Sun, G. Ren, Diffusive field coupling induced synchronization between neural circuits under energy balance. Chin. Phys. B (2022). https://doi.org/10.1088/1674-1056/ac7bff/meta

    Article  Google Scholar 

  53. P. Zhou, X. Hu, Z. Zhu et al., What is the most suitable Lyapunov function? Chaos, Solitons Fractals 150, 111154 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  54. F.J. Torrealdea, C. Sarasola, A. d’Anjou, Energy consumption and information transmission in model neurons. Chaos, Solitons Fractals 40, 60–68 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. F. Yang, Y. Xu, J. Ma, A memristive neuron and its adaptability to external electric field. Chaos 33, 023110 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  56. C. Sarasola, F.J. Torrealdea, A. d’Anjou et al., Energy balance in feedback synchronization of chaotic systems. Phys. Review E 69, 11606 (2004)

    Article  ADS  Google Scholar 

  57. C. Sarasola, A. d’Anjou, F.J. Torrealdea et al., Minimization of the energy flow in the synchronization of nonidentical chaotic systems. Phys. Rev. E 72, 026223 (2005)

    Article  ADS  Google Scholar 

  58. F.J. Torrealdea, A. d’Anjou, M. Graña et al., Energy aspects of the synchronization of model neurons. Phys. Rev. E 74, 011905 (2006)

    Article  ADS  Google Scholar 

  59. F.J. Torrealdea, C. Sarasola, A. d’Anjou et al., Energy efficiency of information transmission by electrically coupled neurons. Biosystems 97, 60–71 (2009)

    Article  MATH  Google Scholar 

  60. D. Cafagna, G. Grassi, Fractional-order Chua’s circuit: time-domain analysis, bifurcation, chaotic behavior and test for chaos. Int. J. Bifurc. Chaos 18, 615–639 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  61. T.T. Hartley, C.F. Lorenzo, H.K. Qammer, Chaos in a fractional order Chua’s system. IEEE Trans. Circu. Sys.I: Fund. Theory Appl. 42, 485–490 (1995)

    Article  Google Scholar 

  62. B.S.T. Alkahtani, Chua’s circuit model with Atangana-Baleanu derivative with fractional order. Chaos, Solitons Fractals 89, 547–551 (2016)

    Article  ADS  MATH  Google Scholar 

  63. D. Baleanu, S.S. Sajjadi, A. Jajarmi et al., On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: a new fractional analysis and control. Adv. Diff. Equ. 2021, 234 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  64. M. Hajipour, A. Jajarmi, D. Baleanu, An efficient nonstandard finite difference scheme for a class of fractional chaotic systems. J. Comput. Nonlin. Dyn. 13, 021013 (2018)

    Article  Google Scholar 

  65. D. Baleanu, S. Zibaei, M. Namjoo et al., A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a novel fractional chaotic system. Adv. Diff. Equ. 2021, 308 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  66. D. Baleanu, S.S. Sajjadi, J.H. Asad et al., Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system. Adv. Diff. Equ. 2021, 157 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  67. C. Wang, Z. Liu, A. Hobiny et al., Capturing and shunting energy in chaotic Chua circuit. Chaos, Solitons Fractals 134, 109697 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  68. L.O. Chua, G.N. Lin, Canonical realization of Chua’s circuit family. IEEE Trans. Circ. Sys. 37, 885–902 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  69. S. Chakraborty, S.K. Dana, Shil’nikov chaos and mixed-mode oscillation in Chua circuit. Chaos 20, 023107 (2010)

    Article  ADS  Google Scholar 

  70. Y. Xie, Z. Yao, J. Ma, Formation of local heterogeneity under energy collection in neural networks. Sci. China Technol. Sci. 66, 439–455 (2023)

    Article  ADS  Google Scholar 

  71. J. Ma, Biophysical neurons, energy, and synapse controllability: a review. J. Zhejiang Univ., Sci., A 24, 109–129 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This project is partially supported by National Natural Science Foundation of China under Grant No. (12072139). The authors thank Miss Ying Xie for the help with the numerical confirmation and figures edition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, B., Zhou, P., Ren, G. et al. Energy flow controls synchronization in a network coupled with memristive synapses. Eur. Phys. J. Plus 138, 293 (2023). https://doi.org/10.1140/epjp/s13360-023-03900-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03900-x

Navigation