Skip to main content
Log in

Coherent manipulation of spin density of light in two-wave interference in atomic medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A four-level N-type atomic configuration driven by two interacting control fields and a probe field. Control fields are used to manipulate and control the spin density of the probe field and its spin angular momentum vector field arrows. Significant variation of spin density of probe field is investigated with the angle between two interfering waves and the Rabi frequency of the control field. Spin distribution and spin density of circularly, diagonal, and linearly polarized probe light field is coherently controlled and modified. The control field parameters and probe field detuning play important roles in the modification of spin density and spin vector field distribution of the probe field. The modified works of this manuscript are useful for unidirectional optical interfaces and the quantum spin Hall effect of the light beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

No data are associated with this manuscript.

References

  1. L. Allen, S.M. Barnett, M.J. Padgett (eds.), Optical Angular Momentum (IoP Publishing, Bristol, 2003)

    Google Scholar 

  2. A. Bekshaev, M. Soskin, M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Science Publishers, New York, 2008)

    Google Scholar 

  3. D.L. Andrews (ed.), Structured Light and its Applications (Academic Press, Amsterdam, 2008)

    Google Scholar 

  4. J.P. Torres, L. Torner (eds.), Twisted Photons (Wiley-VCH, Weinheim, 2011)

    Google Scholar 

  5. D.L. Andrews, M. Babiker (eds.), The Angular Momentum of Light (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  6. L. Allen, M.J. Padgett, M. Babiker, The orbital angular momentum of light. Prog. Opt. 39, 291–372 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Molina-Terriza, J.P. Torres, L. Torner, Twisted photons. Nat. Phys. 3, 305–310 (2007)

    Article  Google Scholar 

  8. S. Franke-Arnold, L. Allen, M.J. Padgett, Advances in optical angular momentum. Laser Photon. Rev 2, 299–313 (2008)

    Article  ADS  Google Scholar 

  9. A.M. Yao, M.J. Padgett, Optical angular momentum: origins, behavior, and applications. Adv. Opt. Photon. 3, 161–204 (2011)

    Article  Google Scholar 

  10. A. Bekshaev, K.Y. Bliokh, M. Soskin, Internal flows and energy circulation in light beams. J. Opt. 13, 053001 (2011)

    Article  ADS  Google Scholar 

  11. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom–Photon Interactions (Wiley-VCH, 2004)

    Google Scholar 

  12. S. Stenholm, The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699–739 (1986)

    Article  ADS  Google Scholar 

  13. D.G. Grier, A revolution in optical manipulation. Nature 424, 810–816 (2003)

    Article  ADS  Google Scholar 

  14. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomech. Rev. Mod. Phys. (2015, in press). arXiv:1303.0733

  15. S. Huard, C. Imbert, Measurement of exchanged momentum during interaction between surface-wave and moving atom. Opt. Commun. 24, 185–189 (1978)

    Article  ADS  Google Scholar 

  16. K.Y. Bliokh, A.Y. Bekshaev, A.G. Kofman, F. Nori, Photon trajectories, anomalous velocities, and weak measurements: a classical interpretation. New J. Phys. 15, 073022 (2013)

    Article  ADS  MATH  Google Scholar 

  17. S.M. Barnett, M.V. Berry, Superweak momentum transfer near optical vortices. J. Opt. 15, 125701 (2013)

    Article  ADS  Google Scholar 

  18. K.Y. Bliokh, A.Y. Bekshaev, F. Nori, Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014)

    Article  ADS  Google Scholar 

  19. M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998)

    Article  ADS  Google Scholar 

  20. A.T. O’Neil, I. MacVicar, L. Allen, M.J. Padgett, Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002)

    Article  ADS  Google Scholar 

  21. V. Garcés-Chavéz, D. McGloin, M.J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys. Rev. Lett. 91, 093602 (2003)

    Article  ADS  Google Scholar 

  22. A. Ashkin, J.P. Gordon, Stability of radiation-pressure particle traps: an optical Earnshaw theorem. Opt. Lett. 8, 511–513 (1983)

    Article  ADS  Google Scholar 

  23. M. Nieto-Vesperinas, J.J. Saenz, R. Gomez-Medina, L. Chantada, Optical forces on small magnetodielectric particles. Opt. Express 18, 11428–11443 (2010)

    Article  ADS  Google Scholar 

  24. A.Y. Bekshaev, Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows. J. Opt. 15, 044004 (2013)

    Article  ADS  Google Scholar 

  25. A. Canaguier-Durand, A. Cuche, C. Genet, T.W. Ebbesen, Force and torque on an electric dipole by spinning light fields. Phys. Rev. A 88, 033831 (2013)

    Article  ADS  Google Scholar 

  26. K.Y. Bliokh, Y.S. Kivshar, F. Nori, Magnetoelectric effects in local light-matter interactions. Phys. Rev. Lett. 113, 033601 (2014)

    Article  ADS  Google Scholar 

  27. M.V. Berry, Optical currents. J. Opt. A Pure Appl. Opt. 11, 094001 (2009)

    Article  ADS  Google Scholar 

  28. A. Canaguier-Durand, C. Genet, Transverse spinning of a sphere in plasmonic field. Phys. Rev. A 89, 033841 (2014)

    Article  ADS  Google Scholar 

  29. C. Junge, D. O’Shea, J. Volz, A. Rauschenbeutel, Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013)

    Article  ADS  Google Scholar 

  30. M. Neugebauer, T. Bauer, P. Banzer, G. Leuchs, Polarization tailored light driven directional optical nanobeacon. Nano Lett. 14, 2546–2551 (2014)

    Article  ADS  Google Scholar 

  31. J. Petersen, J. Volz, A. Rauschenbeutel, Chiral nanophotonic waveguide interface based on spin-orbit coupling of light. Science 346, 67–71 (2014)

    Article  ADS  Google Scholar 

  32. D. O’Connor, P. Ginzburg, F.J. Rodriguez-Fortuno, G.A. Wurtz, A.V. Zayats, Spinorbit coupling in surface plasmon scattering by nanostructures. Nature Commun. 5, 5327 (2014)

    Article  ADS  Google Scholar 

  33. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, 1999)

    MATH  Google Scholar 

  34. L. Allen, S.M. Barnett, M.J. Padgett, Optical Angular Momentum (IoP Publishing, 2003)

    Book  Google Scholar 

  35. J.H. Poynting, The wave-motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly-polarized light. Proc. R. Soc. Lond. Ser. A 82, 560–567 (1909)

    Article  ADS  MATH  Google Scholar 

  36. R.A. Beth, Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936)

    Article  ADS  Google Scholar 

  37. M.R. Dennis, A.C. Hamilton, J. Courtial, Superoscillations in speckle patterns. Opt. Lett. 33, 2976–2978 (2008)

    Article  ADS  Google Scholar 

  38. F.I. Fedorov, To the theory of total reflection. Doklady Akademii Nauk SSSR 105, 465–468 (1955) [translated and reprinted in J. Opt. 15, 014002 (2013)]

  39. C. Imbert, Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam. Phys. Rev. D 5, 787–796 (1972)

    Article  ADS  Google Scholar 

  40. A.Y. Bekshaev, K.Y. Bliokh, F. Nori, Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015)

    Google Scholar 

  41. E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining. Appl. Phys. Lett. 64, 2209–2210 (1994)

    Article  ADS  Google Scholar 

  42. N. Simpson, K. Dholakia, L. Allen, M. Padgett, Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22, 52–54 (1997)

    Article  ADS  Google Scholar 

  43. D. Grier, A revolution in optical manipulation. Nature 424, 810–816 (2003)

    Article  ADS  Google Scholar 

  44. J. Courtial, M. Padgett, Limit to the orbital angular momentum per unit energy in a light beam that can be focused onto a small particle. Opt. Commun. 173, 269–274 (2000)

    Article  ADS  Google Scholar 

  45. K. Ladavac, D. Grier, Micro-optomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express 12, 1144–1149 (2004)

    Article  ADS  Google Scholar 

  46. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, J. Cooper, An optically driven pump for microfluidics. Lab. Chip. 6, 735–739 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tariq.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, M., Hamza, A., Hammad, M. et al. Coherent manipulation of spin density of light in two-wave interference in atomic medium. Eur. Phys. J. Plus 137, 1058 (2022). https://doi.org/10.1140/epjp/s13360-022-03269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03269-3

Navigation