Skip to main content
Log in

Coherent manipulation of optical magnetic spin angular momentum of two-wave interference in atomic medium

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A four-level ladder-type atomic configuration of the sodium atom from the \(D_1\)-line is driven by the probe field and two interacting control fields is used to manipulate and control coherently the magnetic spin density of the probe field via electromagnetically induced transparency (EIT). In this technique, a weak probe laser beam is applied in the presence of a strong control laser beam, which creates a transparency window in the medium, allowing the probe beam to pass through with minimal absorption. By controlling the relative phase and polarization of the probe and control beams, the angular momentum of the probe beam can be manipulated and controlled coherently. Substantial variation is investigated in the behavior of the graphs of two interfering waves with the Rabi frequencies of the control field, detuning of the probe and control fields and the angle between the two interfering waves. Magnetic spin vector field distribution and magnetic spin density of circularly, diagonally and linearly polarized probe light field are coherently controlled and modified. The major role in this modification is played by the detuning of the probe field and the parameters of the control fields. This modified work in magnetic spin density and magnetic spin AM vector field arrow distribution is useful in the unidirectional optical interfaces, birefringence and the quantum spin Hall effect of the light beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No data are associated with the manuscript.

References

  1. L. Allen, S.M. Barnett, M.J. Padgett (eds.), Optical Angular Momentum (IoP Publishing, Bristol, 2003)

    Google Scholar 

  2. A. Bekshaev, M. Soskin, M. Vasnetsov, Paraxial Light Beams with Angular Momentum (Nova Science Publishers, New York, 2008)

    Google Scholar 

  3. D.L. Andrews (ed.), Structured Light and Its Applications (Academic Press, Amsterdam, 2008)

    Google Scholar 

  4. J.P. Torres, L. Torner (eds.), Twisted Photons (Wiley-VCH, Weinheim, 2011)

    Google Scholar 

  5. D.L. Andrews, M. Babiker (eds.), The Angular Momentum of Light (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  6. L. Allen, M.J. Padgett, M. Babiker, The orbital angular momentum of light. Prog. Opt. 39, 291–372 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Molina-Terriza, J.P. Torres, L. Torner, Twisted photons. Nat. Phys. 3, 305–310 (2007)

    Article  Google Scholar 

  8. S. Franke-Arnold, L. Allen, M.J. Padgett, Advances in optical angular momentum. Laser Photonics Rev. 2, 299–313 (2008)

    Article  ADS  Google Scholar 

  9. A.M. Yao, M.J. Padgett, Optical angular momentum: origins, behavior, and applications. Adv. Opt. Photonics 3, 161–204 (2011)

    Article  ADS  Google Scholar 

  10. A. Bekshaev, K.Y. Bliokh, M. Soskin, Internal flows and energy circulation in light beams. J. Opt. 13, 053001 (2011)

    Article  ADS  Google Scholar 

  11. M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1995)

    Article  ADS  Google Scholar 

  12. S. Stenholm, The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699 (1986)

    Article  ADS  Google Scholar 

  13. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom–Photon Interactions (Wiley-VCH, New York, 2004)

    Google Scholar 

  14. D.G. Grier, A revolution in optical manipulation. Nature (London) 424, 810 (2003)

    Article  ADS  Google Scholar 

  15. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  16. M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Optical alignment and spinning of laser-trapped microscopic particles. Nature (London) 394, 348 (1998)

    Article  ADS  Google Scholar 

  17. A.T. O’Neil, I. MacVicar, L. Allen, M.J. Padgett, Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002)

    Article  ADS  Google Scholar 

  18. V. Garcés-Chávez, D. McGloin, M.J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys. Rev. Lett. 91, 093602 (2003)

    Article  ADS  Google Scholar 

  19. R. Loudon, C. Baxter, Contribution of John Henry Poynting to the understanding of radiation pressure. Proc. R. Soc. A 468, 1825 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    MATH  Google Scholar 

  21. R.A. Beth, Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936)

    Article  ADS  Google Scholar 

  22. S. Huard, C. Imbert, Measurement of exchanged momentum during interaction between surface-wave and moving atom. Opt. Commun. 24, 185 (1978)

    Article  ADS  Google Scholar 

  23. M.R. Dennis, A.C. Hamilton, J. Courtial, Superoscillations in speckle patterns. Opt. Lett. 33, 2976 (2008)

    Article  ADS  Google Scholar 

  24. K.Y. Bliokh, A.Y. Bekshaev, A.G. Kofman, F. Nori, Photon trajectories, anomalous velocities, and weak measurements: a classical interpretation. New J. Phys. 15, 073022 (2013)

    Article  ADS  MATH  Google Scholar 

  25. S.M. Barnett, M.V. Berry, Superweak momentum transfer near optical vortices. J. Opt. 15, 125701 (2013)

    Article  ADS  Google Scholar 

  26. K.Y. Bliokh, F. Nori, Transverse spin of a surface polariton. Phys. Rev. A 85, 061801(R) (2012)

    Article  ADS  Google Scholar 

  27. K.Y. Bliokh, A.Y. Bekshaev, F. Nori, Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014)

    Article  ADS  Google Scholar 

  28. A. Canaguier-Durand, C. Genet, Transverse spinning of a sphere in plasmonic field. Phys. Rev. A 89, 033841 (2014)

    Article  ADS  Google Scholar 

  29. C. Junge, D. O’Shea, J. Volz, A. Rauschenbeutel, Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013)

    Article  ADS  Google Scholar 

  30. J. Petersen, J. Volz, A. Rauschenbeutel, Chiral nanophotonic waveguide interface based on spin-orbit coupling of light. Science 346, 67 (2014)

    Article  ADS  Google Scholar 

  31. H. Zhang et al., Coherent control of optical spin-to-orbital angular momentum conversion in metasurface. Adv. Mater. 29(6), 1604252 (2017)

    Article  Google Scholar 

  32. J. Chen, C. Wan, Q. Zhan, Engineering photonic angular momentum with structured light: a review. Adv. Photonics 3(6), 064001 (2021)

    Article  ADS  Google Scholar 

  33. L. Marrucci, C. Manzo, D. Paparo, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96(16), 163905 (2006)

    Article  ADS  Google Scholar 

  34. F. Bouchard et al., Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges. Appl. Phys. Lett. 105(10), 101905 (2014)

    Article  ADS  Google Scholar 

  35. S.M. Barnett, M. Babiker, M.J. Padgett, Optical orbital angular momentum. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375(2087), 20150444 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Y. Zhao et al., Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99(7), 073901 (2007)

    Article  ADS  Google Scholar 

  37. L. Marrucci et al., Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13(6), 064001 (2011)

    Article  ADS  Google Scholar 

  38. D.L.P. Vitullo et al., Observation of interaction of spin and intrinsic orbital angular momentum of light. Phys. Rev. Lett. 118(8), 083601 (2017)

    Article  ADS  Google Scholar 

  39. A.Y. Bekshaev, K.Y. Bliokh, F. Nori, Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mr. R and Dr. MT have worked in four-level model of rubidium-87 and also derive the relationship between the magnetic spin density of light and control field parameters of the medium. Dr. MT and AH worked in the results and contribution section in explaining the graphs and giving physical interpretation to it. Dr. MT supervised the whole manuscript.

Corresponding author

Correspondence to Muhammad Tariq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safi, R., Tariq, M. & Hamza, A. Coherent manipulation of optical magnetic spin angular momentum of two-wave interference in atomic medium. J Opt 52, 2199–2206 (2023). https://doi.org/10.1007/s12596-023-01133-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01133-w

Keywords

Navigation